Skip to main content
Log in

MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Chemoradiation therapy (CRT) prior to surgery is increasingly the standard of care for locally advanced oesophageal cancer. Radiation therapy is important for local tumour control; however, tumour resistance to radiation is a substantial clinical problem. The mechanism(s) of radioresistance are still poorly understood, however, mounting evidence supports a role for microRNA (miRNA) in modulating key cellular pathways mediating response to radiation. Global miRNA profiling of an established isogenic model of radioresistance in oesophageal adenocarcinoma demonstrated a significant downregulation of miR-31 in radioresistant cells, both basally and in response to radiation. Ectopic re-expression of miR-31 significantly re-sensitised radioresistant cells to radiation. miR-31 was demonstrated to alter the expression of 13 genes involved in DNA repair, which is a critical cellular defence against radiation-induced DNA damage. In oesophageal tumours, miR-31 expression was significantly reduced in patients demonstrating poor histomorphologic response to neoadjuvant CRT, whilst expression of the miR-31-regulated DNA repair genes was significantly increased. Our data suggest a possible mechanism for resistance to CRT, potentially via enhanced DNA repair. This study demonstrates, for the first time, a role for miR-31 in modulating radioresistance and highlights the need for further study investigating the potential role of miR-31 as both a predictive marker of response and a novel therapeutic agent with which to enhance the efficacy of radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pera M, Manterola C, Vidal O, Grande L (2005) Epidemiology of esophageal adenocarcinoma. J Surg Oncol 92:151–159

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  3. Reynolds JV, Muldoon C, Hollywood D, Ravi N, Rowley S, O'Byrne K, Kennedy J, Murphy TJ (2007) Long-term outcomes following neoadjuvant chemoradiotherapy for esophageal cancer. Ann Surg 245:707–716

    Article  PubMed  Google Scholar 

  4. Kelsen DP (2000) Multimodality therapy of esophageal cancer: an update. Cancer J 6(Suppl 2):S177–S181

    PubMed  Google Scholar 

  5. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ (2003) Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 79:759–775

    Article  PubMed  CAS  Google Scholar 

  6. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  7. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    Article  PubMed  CAS  Google Scholar 

  8. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229

    Article  PubMed  CAS  Google Scholar 

  9. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA (2008) Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68:1599–1606

    Article  PubMed  CAS  Google Scholar 

  10. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    Article  PubMed  CAS  Google Scholar 

  11. Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M, Swanson SJ, Godfrey TE, Litle VR (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, Li B, Meng X, Ma X, Luo M et al (2008) Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68:26–33

    Article  PubMed  CAS  Google Scholar 

  13. Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG (2010) Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res 174:703–711

    Article  PubMed  CAS  Google Scholar 

  14. Maher SG, Gillham CM, Duggan SP, Smyth PC, Miller N, Muldoon C, O'Byrne KJ, Sheils OM, Hollywood D, Reynolds JV (2009) Gene expression analysis of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esophageal cancer. Ann Surg 250:729–737

    Article  PubMed  Google Scholar 

  15. Greene FL, Sobin LH (2002) The TNM system: our language for cancer care. J Surg Oncol 80:119–120

    Article  PubMed  Google Scholar 

  16. Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686

    Article  PubMed  CAS  Google Scholar 

  17. miRecords (2010). Available at: http://miRecords.biolead.org

  18. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14:35–42

    Article  PubMed  CAS  Google Scholar 

  19. Ivanov SV, Goparaju CM, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, Hoshen M, Chajut A, Cohen D, Pass HI (2010) Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem 285:22809–22817

    Article  PubMed  CAS  Google Scholar 

  20. Sasaki S, Kitagawa Y, Sekido Y, Minna JD, Kuwano H, Yokota J, Kohno T (2003) Molecular processes of chromosome 9p21 deletions in human cancers. Oncogene 22:3792–3798

    Article  PubMed  CAS  Google Scholar 

  21. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL (1996) Genomic instability induced by ionizing radiation. Radiat Res 146:247–258

    Article  PubMed  CAS  Google Scholar 

  22. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM et al (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70:1906–1915

    Article  PubMed  CAS  Google Scholar 

  23. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  PubMed  CAS  Google Scholar 

  24. Chang IY, Youn CK, Kim HB, Kim MH, Cho HJ, Yoon Y, Lee YS, Chung MH, You HJ (2005) Oncogenic H-Ras up-regulates expression of Ku80 to protect cells from gamma-ray irradiation in NIH3T3 cells. Cancer Res 65:6811–6819

    Article  PubMed  CAS  Google Scholar 

  25. Naidu MD, Mason JM, Pica RV, Fung H, Pena LA (2010) Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. J Radiat Res (Tokyo) 51:393–404

    Article  CAS  Google Scholar 

  26. Zhang Y, Rohde LH, Wu H (2009) Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 10:250–258

    Article  PubMed  CAS  Google Scholar 

  27. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, Morlan BW, Riska SM, Boardman LA, Cunningham JM et al (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401

    Article  PubMed  Google Scholar 

  28. Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69:5553–5559

    Article  PubMed  CAS  Google Scholar 

  29. An Q, Robins P, Lindahl T, Barnes DE (2005) C–>T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J 24:2205–2213

    Article  PubMed  CAS  Google Scholar 

  30. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402

    Article  PubMed  CAS  Google Scholar 

  31. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF (2009) Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26:27–34

    PubMed  Google Scholar 

  32. Cottonham CL, Kaneko S, Xu L (2010) miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285:35293–35302

    Article  PubMed  CAS  Google Scholar 

  33. van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, Vandertop PW, Wurdinger T, Noske DP, Kaspers GJ et al (2011) PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2:984–996

    PubMed  Google Scholar 

  34. Bucci B, D'Agnano I, Amendola D, Citti A, Raza GH, Miceli R, De Paula U, Marchese R, Albini S, Felsani A et al (2005) Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 11:2756–2767

    Article  PubMed  CAS  Google Scholar 

  35. Atherfold PA, Jankowski JA (2006) Molecular biology of Barrett's cancer. Best Pract Res Clin Gastroenterol 20:813–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Anthony Davies and Mr. Connla Edwards for assistance with high content screening analysis. This work was supported by the Irish Cancer Society and the C.R.O.S.S. Foundation (CHY 389874) at St. James’s Hospital. SGM is supported by an Irish Cancer Society Research Fellowship, CRF10MAH.

Disclosure of potential conflict of interest

There is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Reynolds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynam-Lennon, N., Reynolds, J.V., Marignol, L. et al. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J Mol Med 90, 1449–1458 (2012). https://doi.org/10.1007/s00109-012-0924-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0924-x

Keywords

Navigation