Skip to main content
Log in

Arsenic trioxide induces apoptosis preferentially in B-CLL cells of patients with unfavourable prognostic factors including del17p13

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In the last decade, arsenic trioxide (As2O3) has been used very successfully to treat acute promyelocytic leukaemia (APL). Much less is known about the effectiveness of As2O3 in other neoplastic disorders. In this paper, we report that after 18 h in vitro treatment with 4 μM As2O3, 75 ± 18% of B cell chronic lymphocytic leukaemia (B-CLL) cells (n = 52) underwent apoptosis. It is important to note that B-CLL cells harboring a deletion of chromosome 17p13, which predisposes to fludarabine resistance and has been identified as an important negative predictor of clinical outcome, were more susceptible to As2O3 toxicity than cells lacking this aberration. Furthermore, unfavourable risk profiles such as unmutated IgVH status, high CD38 expression and prior treatment were associated with significantly higher sensitivity of B-CLL cells to As2O3. As2O3 also preferentially killed B-CLL cells compared to B cells from healthy age-matched controls. Molecular analysis revealed that basal superoxide dismutase activity was positively correlated with the pro-apoptotic activity of As2O3 pointing to a role of reactive oxygen species in cell death induction. The high activity of As2O3 in B-CLL cells from high-risk patients makes it a promising drug for high-risk and/or fludarabine-refractory B-CLL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lanham S, Hamblin T, Oscier D, Ibbotson R et al (2003) Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 101:1087–1093

    Article  PubMed  CAS  Google Scholar 

  2. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z et al (2002) CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 99:1023–1029

    Article  PubMed  CAS  Google Scholar 

  3. Tinhofer I, Rubenzer G, Holler C, Hofstaetter E et al (2006) Expression levels of CD38 in T cells predict course of disease in male patients with B-chronic lymphocytic leukemia. Blood 108:2950–2956

    Article  PubMed  Google Scholar 

  4. Chen L, Widhopf G, Huynh L, Rassenti L et al (2002) Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100:4609–4614

    Article  PubMed  CAS  Google Scholar 

  5. Wiestner A, Rosenwald A, Barry TS, Wright G et al (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944–4951

    Article  PubMed  CAS  Google Scholar 

  6. Stilgenbauer S, Kröber A, Busch R, Eichhorst B et al (2005) 17p deletion predicts for shorter overall survival after fludarabine-based first line therapy in chronic lymphocytic leukemia: First analysis of the CLL trial of the GCLLSG.. Onkologie 28(suppl 3):X–290:29–30

    Google Scholar 

  7. Sturm I, Bosanquet AG, Hermann S, Guner D et al (2003) Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ 10:477–484

    Article  PubMed  CAS  Google Scholar 

  8. Lozanski G, Heerema NA, Flinn IW, Smith L et al (2004) Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 103:3278–3281

    Article  PubMed  CAS  Google Scholar 

  9. Byrd JC, Gribben JG, Peterson BL, Grever MR et al (2006) Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol 24:437–443

    Article  PubMed  Google Scholar 

  10. Eichhorst BF, Busch R, Hopfinger G, Pasold R et al (2006) Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 107:885–891

    Article  PubMed  Google Scholar 

  11. Wierda W, O’Brien S, Wen S, Faderl S et al (2005) Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 23:4070–4078

    Article  PubMed  Google Scholar 

  12. Hillmen P, Skotnicki A, Robak T, Jaksic B et al (2006) Alemtuzumab (CAMPATH(R), MABCAMPATH(R)) has superior progression free survival (PFS) vs chlorambucil as front-line therapy for patients with progressive B-cell chronic lymphocytic leukemia (BCLL). ASH Annual Meeting Abstracts 108:301

    Google Scholar 

  13. Byrd JC, Lin TS, Dalton JT, Wu D et al (2007) Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109:399–404

    Article  PubMed  Google Scholar 

  14. Raffoux E, Rousselot P, Poupon J, Daniel MT et al (2003) Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 21:2326–2334

    Article  PubMed  CAS  Google Scholar 

  15. Soignet SL, Maslak P, Wang ZG, Jhanwar S et al (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  PubMed  CAS  Google Scholar 

  16. Shen ZY, Shen J, Cai WJ, Hong C et al (2000) The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. Int J Mol Med 5:155–158

    PubMed  CAS  Google Scholar 

  17. Park WH, Seol JG, Kim ES, Hyun JM et al (2000) Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res 60:3065–3071

    PubMed  CAS  Google Scholar 

  18. Zhou Y, Hileman EO, Plunkett W, Keating MJ et al (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098–4104

    Article  PubMed  CAS  Google Scholar 

  19. Kitamura K, Minami Y, Yamamoto K, Akao Y et al (2000) Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia 14:1743–1750

    Article  PubMed  CAS  Google Scholar 

  20. Scholz C, Richter A, Lehmann M, Schulze-Osthoff K et al (2005) Arsenic trioxide induces regulated, death receptor-independent cell death through a Bcl-2-controlled pathway. Oncogene 24:7031–7042

    Article  PubMed  Google Scholar 

  21. Scholz C, Wieder T, Starck L, Essmann F et al (2005) Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene 24:1904–1913

    Article  PubMed  Google Scholar 

  22. Liu Q, Hilsenbeck S, Gazitt Y (2003) Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101:4078–4087

    Article  PubMed  CAS  Google Scholar 

  23. Cheson BD, Bennett JM, Grever M, Kay N et al (1996) National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 87:4990–4997

    PubMed  CAS  Google Scholar 

  24. Crespo M, Bosch F, Villamor N, Bellosillo B et al (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348:1764–1775

    Article  PubMed  CAS  Google Scholar 

  25. Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F et al (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70

    Article  PubMed  Google Scholar 

  26. Chen GQ, Shi XG, Tang W, Xiong SM et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89:3345–3353

    PubMed  CAS  Google Scholar 

  27. el Rouby S, Thomas A, Costin D, Rosenberg CR et al (1993) p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82:3452–3459

    PubMed  Google Scholar 

  28. Pelicano H, Feng L, Zhou Y, Carew JS et al (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    Article  PubMed  CAS  Google Scholar 

  29. Bakan N, Taysi S, Yilmaz O, Bakan E et al (2003) Glutathione peroxidase, glutathione reductase, Cu-Zn superoxide dismutase activities, glutathione, nitric oxide, and malondialdehyde concentrations in serum of patients with chronic lymphocytic leukemia. Clin Chim Acta 338:143–149

    Article  PubMed  CAS  Google Scholar 

  30. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    PubMed  CAS  Google Scholar 

  31. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG et al (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102–2111

    PubMed  CAS  Google Scholar 

  32. Huang P, Feng L, Oldham EA, Keating MJ et al (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  PubMed  CAS  Google Scholar 

  33. Carew JS, Nawrocki ST, Krupnik YV, Dunner K Jr. et al (2006) Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL. Blood 107:222–231

    Article  PubMed  Google Scholar 

  34. Taylor BF, McNeely SC, Miller HL, Lehmann GM et al (2006) p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 318:142–151

    Article  PubMed  Google Scholar 

  35. Damle RN, Temburni S, Calissano C, Yancopoulos S et al (2007) CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 110:3352–3359

    Article  PubMed  CAS  Google Scholar 

  36. Messmer BT, Messmer D, Allen SL, Kolitz JE et al (2005) In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115:755–764

    PubMed  Google Scholar 

  37. Carew JS, Zhou Y, Albitar M, Carew JD et al (2003) Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 17:1437–1447

    Article  PubMed  CAS  Google Scholar 

  38. Fayad L, Keating MJ, Reuben JM, O’Brien S et al (2001) Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 97:256–263

    Article  PubMed  CAS  Google Scholar 

  39. Ono M, Kohda H, Kawaguchi T, Ohhira M et al (1992) Induction of Mn-superoxide dismutase by tumor necrosis factor, interleukin-1 and interleukin-6 in human hepatoma cells. Biochem Biophys Res Commun 182:1100–1107

    Article  PubMed  CAS  Google Scholar 

  40. Dhar SK, Xu Y, Chen Y, St Clair DK (2006) Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression. J Biol Chem 281:21698–21709

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nathalie Wacht and Elisabeth Hofstätter for the excellent technical assistance in the preparation of PBMCs, data collection and FISH analysis. We are grateful for the very good collaboration with the laboratory of Dr. Hans Georg Mustafa. Finally, we want to thank Rajam Csordas for the critical reading of the manuscript. The support of the FWF-project P16153 to I.T., the SFB programme F021 to R.G. and I.T., the research grant from EBEWE, Austria and FFF project no. 810222, the Verein zur Förderung für Klinische Malignom und Zytokinforschung (Innsbruck–Salzburg), GEN-AU project GOLD and the research grant from the Jubiläumsfond der Österreichischen Nationalbank project no. 12170 to R.G. are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Merkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkel, O., Heyder, C., Asslaber, D. et al. Arsenic trioxide induces apoptosis preferentially in B-CLL cells of patients with unfavourable prognostic factors including del17p13. J Mol Med 86, 541–552 (2008). https://doi.org/10.1007/s00109-008-0314-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0314-6

Keywords

Navigation