Skip to main content
Log in

The unfolded protein response and cancer: a brighter future unfolding?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mammalian cells are bathed in an interstitial fluid that has a tightly regulated composition in healthy states. Interstitial fluid provides cells with all the necessary metabolic substrates (oxygen, glucose, amino acids, etc.), and waste molecules are removed by diffusion gradients that are controlled by local vascular perfusion. The health and normal function of all cells within a body is dependent on the maintenance of this microenvironment. However, many disease states cause fluctuations in this, and in some instances, these might be of sufficient severity to stress and/or be toxic to the cell. Cells have developed a number of responses to enable their survival in a hostile environment. This article discusses one such pathway—the unfolded protein response and its relationship to cancer. The molecular signalling cascade, the mechanism of its activation in cancer and the consequences of its activation for a tumour are discussed, as are clinical studies and potential translational approaches for utilising this pathway for tumour targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

Grp:

glucose-regulated protein

hsp:

heat shock protein

UPR:

unfolded protein response

References

  1. Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    CAS  Google Scholar 

  2. Ritossa FM (1963) New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes of Drosophila melanogaster. Drosoph Inf Serv 37:122–123

    Google Scholar 

  3. Ritossa FM (1964) Specific loci in polytene chromosomes of Drosophila. Exp Cell Res 35:601–607

    PubMed  CAS  Google Scholar 

  4. Tissières A, Mitchell HK, Tracy U (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    PubMed  Google Scholar 

  5. Subjeck JR, Shyy T, Shen J, Johnson RJ (1983) Association between mammalian 110,000 dalton heat shock protein and nucleoli. J Cell Biol 97:1389–1398

    PubMed  CAS  Google Scholar 

  6. Hattori H, Liu Y-C, Tohnai I, Ueda M, Kaneda T, Kobayashi T, Tanabe K, Ohtsuka K (1992) Intracellular localization and partial amino acid sequence of a stress-inducible 40-kDa protein in HeLa cells. Cell Struct Funct 17:77–86

    Article  PubMed  CAS  Google Scholar 

  7. Hattori H, Kaneda T, Lokeshwar B, Laszlo A, Ohtsuka K (1993) A stress-inducible 40 kDa protein (hsp40): purification by modified two-dimensional gel electrophoresis and co-localization with hsc70(p73) in heat-shocked HeLa cells. J Cell Sci 104:629–638

    PubMed  CAS  Google Scholar 

  8. Nagata K, Saga S, Yamada KM (1986) A major collagen-binding protein of chicken embryo fibroblasts is a novel heat shock protein. J Cell Biol 103:223–229

    PubMed  CAS  Google Scholar 

  9. Hartman DJ, Hoogenraad NJ, Condron R, Hoj PB (1992) Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc Natl Acad Sci USA 89:3394–3398

    PubMed  CAS  Google Scholar 

  10. Kopecek P, Altmannova K, Weigl E (2001) Stress proteins: nomenclature, divisions and functions. Biomed Pap Med Fac Univ Palacky Univ Olomouc Czech Repub 145:39–47

    CAS  Google Scholar 

  11. Lee AS (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–23

    CAS  Google Scholar 

  12. Chao CC, Yam WC, Lin-Chao S (1990) Coordinated induction of two unrelated glucose regulated protein genes by a calcium ionophore: human BiP/GRP78 and GAPDH. Biochem Biophys Res Commun 171:431–438

    PubMed  CAS  Google Scholar 

  13. Whelan SA, Hightower LE (1985) Differential induction of glucose regulated and heat shock proteins: effects of pH and sulfhydryl reducing agents on chicken embryo cells. J Cell Physiol 125:251–258

    PubMed  CAS  Google Scholar 

  14. Sciandra JJ, Subjeck JR, Hughes CS (1984) Induction of glucose regulated proteins during anaerobic exposure and of heat shock proteins after reoxygenation. Proc Natl Acad Sci USA 81:4843–4847

    PubMed  CAS  Google Scholar 

  15. Shiu RPC, Pouyssegur J, Pastan I (1977) Glucose depletion accounts for the induction of two transformation sensitive membrane proteins in Rous Sarcoma Virus transformed chick embryo fibroblasts. Proc Natl Acad Sci USA 74:3840–3844

    PubMed  CAS  Google Scholar 

  16. Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    PubMed  CAS  Google Scholar 

  17. Roll DE, Murphy BJ, Laderoute KR, Sutherland RM, Smith HC (1991) Oxygen regulated 80 kDa protein and glucose regulated 78 kDa protein are identical. Mol Cell Biochem 103:141–148

    PubMed  CAS  Google Scholar 

  18. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    PubMed  CAS  Google Scholar 

  19. Dorner AJ, Bole DG, Kaufman RJ (1987) The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins. J Cell Biol 105:2665–2674

    PubMed  CAS  Google Scholar 

  20. Chang SC, Wooden SK, Nakaki T, Kim YK, Lin AY, Kung L, Attenello JW, Lee AS (1987) Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc Natl Acad Sci USA 84:680–684

    PubMed  CAS  Google Scholar 

  21. Machamer CE, Doms RW, Bole DG, Helenius A, Rose JK (1990) Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J Biol Chem 265:6879–6883

    PubMed  CAS  Google Scholar 

  22. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    PubMed  CAS  Google Scholar 

  23. Watowich SS, Morimoto RI (1988) Complex regulation of heat shock-and glucose-responsive genes in human cells. Mol Cell Biol 8:393–405

    PubMed  CAS  Google Scholar 

  24. Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264:20602–20607

    PubMed  CAS  Google Scholar 

  25. Lee AS (1992) Mammalian stress response; induction of the glucose-regulated protein family. Curr Opin Cell Biol 4:267–273

    PubMed  CAS  Google Scholar 

  26. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    PubMed  CAS  Google Scholar 

  27. Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824

    PubMed  CAS  Google Scholar 

  28. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717

    PubMed  CAS  Google Scholar 

  29. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3:158–164

    PubMed  CAS  Google Scholar 

  30. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    PubMed  CAS  Google Scholar 

  31. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J Clin Invest 107:585–593

    PubMed  CAS  Google Scholar 

  32. Bertolotti A, Ron DA (2001) Alterations in an IRE1–RNA complex in the mammalian unfolded protein response. J Cell Sci 114:3207–3212

    PubMed  CAS  Google Scholar 

  33. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    PubMed  CAS  Google Scholar 

  34. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    PubMed  CAS  Google Scholar 

  35. Calfon M, Zeng H, Urano F, Till JH, Hubbard RS, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP1 mRNA. Nature 415:92–96

    PubMed  CAS  Google Scholar 

  36. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayma T, Tohyama M (2001) Activation of caspase 12, an endoplasmic reticulum (ER) resident caspase, through tumour necrosis factor receptor associated factor 2 dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940

    PubMed  CAS  Google Scholar 

  37. Nakagawa T, Zhu H, Morishima M, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid β. Nature 403:98–103

    PubMed  CAS  Google Scholar 

  38. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    PubMed  CAS  Google Scholar 

  39. Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    PubMed  CAS  Google Scholar 

  40. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress induced apoptosis and Aβ induced cell death. J Cell Biol 165:347–356

    PubMed  CAS  Google Scholar 

  41. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    PubMed  CAS  Google Scholar 

  42. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol 19:8469–8478

    PubMed  CAS  Google Scholar 

  43. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437

    PubMed  CAS  Google Scholar 

  44. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312:572–576

    PubMed  CAS  Google Scholar 

  45. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509

    PubMed  CAS  Google Scholar 

  46. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic reticulum-resident kinase. Nature 397:271–274

    PubMed  CAS  Google Scholar 

  47. Hinnebusch AG (1994) The eIF-2α kinases: regulators of protein synthesis in starvation and stress. Semin Cell Biol 5:417–426

    PubMed  CAS  Google Scholar 

  48. Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125

    Article  PubMed  CAS  Google Scholar 

  49. Gulow K, Bienert D, Haas IG (2002) BiP is feed-back regulated by control of protein translational efficiency. J Cell Sci 115:2443–2452

    PubMed  CAS  Google Scholar 

  50. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97:2625–12630

    Google Scholar 

  51. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33

    PubMed  CAS  Google Scholar 

  52. van Huizen R, Martindale JL, Gorospe M, Holbrook NJ (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2α signaling. J Biol Chem 278:15558–15564

    PubMed  Google Scholar 

  53. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    PubMed  CAS  Google Scholar 

  54. Ma Y, Hendershot LM (2003) Delineation of the negative feedback regulatory loop that controls protein translation during ER stress. J Biol Chem 278:34864–34873

    PubMed  CAS  Google Scholar 

  55. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signalling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    PubMed  CAS  Google Scholar 

  56. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    PubMed  CAS  Google Scholar 

  57. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364

    PubMed  CAS  Google Scholar 

  58. Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC, Katze MG (2005) Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–1081

    PubMed  CAS  Google Scholar 

  59. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal essential coordination between the unfolded protein response and endoplasmic reticulum associated degradation. Cell 101:249–258

    PubMed  CAS  Google Scholar 

  60. McCracken AA, Bordsky JL (2000) A molecular portrait of the response to unfolded proteins. Genome Biology 1:10131.1–11013.3

    Google Scholar 

  61. Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL (2003) Dependence of endoplasmic reticulum associated degradation of the peptide binding domain and concentration of BiP. Mol Biol Cell 14:3437–3448

    PubMed  CAS  Google Scholar 

  62. Vaupel PW (1994) Tissue pH distribution and bioenergetic status of tumours. Lecture no. 23, Ernst Schering Research Foundation, Berlin, Germany

  63. Vaupel P (1992) Physiological properties of malignant tumours. NMR Biomed 5:220–225

    PubMed  CAS  Google Scholar 

  64. Gullino PM, Grantham FH, Courtney AH (1967) Glucose consumption by transplanted tumors in vivo. Cancer Res 27:1031–1040

    PubMed  CAS  Google Scholar 

  65. Gatenby RA (1995) The potential role of transformation-induced metabolic changes in tumor–host interaction. Cancer Res 55:4151–4156

    PubMed  CAS  Google Scholar 

  66. Rofe AM, Bourgeois CS, Bais R, Conyers RA (1988) The effect of tumour-bearing on 2-deoxy[U-14C]glucose uptake in normal and neoplastic tissues in the rat. Biochem J 253:603–606

    PubMed  CAS  Google Scholar 

  67. Heacock CS, Sutherland RM (1990) Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br J Cancer 62:217–225

    PubMed  CAS  Google Scholar 

  68. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  69. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56:1164–1167

    PubMed  CAS  Google Scholar 

  70. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    PubMed  CAS  Google Scholar 

  71. Izuishi K, Kato K, Ogura T, Kinoshita T, Esumi H (2000) Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 60:6201–6207

    PubMed  CAS  Google Scholar 

  72. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96:3047–3052

    PubMed  CAS  Google Scholar 

  73. Hue L, Rousseau GG (1993) Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes. Adv Enzyme Regul 33:97–110

    PubMed  CAS  Google Scholar 

  74. Vora S, Halper JP, Knowles DM (1985) Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy. Cancer Res 45:2993–3001

    PubMed  CAS  Google Scholar 

  75. Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 271:22776–22780

    Google Scholar 

  76. Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV (1997) Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol 17:4967–4978

    PubMed  CAS  Google Scholar 

  77. Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosch F (1995) Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J 9:1067–1078

    PubMed  CAS  Google Scholar 

  78. Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23:293–310

    PubMed  CAS  Google Scholar 

  79. Gazit G, Lu J, Lee AS (1999) De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 54:135–146

    PubMed  CAS  Google Scholar 

  80. Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R (2005) Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 37:1254–1268

    PubMed  CAS  Google Scholar 

  81. Song MS, Park YK, Lee JH, Park K (2001) Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumour cells through a protein kinase C-ɛ/ERK/AP-1 signalling cascade. Cancer Res 61:8322–8330

    PubMed  CAS  Google Scholar 

  82. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, Kennedy KA, Patierno SR (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26

    PubMed  CAS  Google Scholar 

  83. Ménoret A, Meflah K, Le Pendu J (1994) Expression of the 100KD glucose regulated protein (GRP100/Endoplasmin) is associated with tumourigenicity in a model rat colon adenocarcinomas. Int J Cancer 56:400–440

    PubMed  Google Scholar 

  84. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605–614

    PubMed  CAS  Google Scholar 

  85. Chen X, Ding Y, Chang-Gong L, Mikhail S, Yang CS (2002) Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23:123–130

    PubMed  CAS  Google Scholar 

  86. Takahashi S, Suzuki S, Inaguma S, Ikeda Y, Cho YM, Nishiyama N, Fujita T, Inoue T, Hioki T, Sugimura Y, Ushijima T, Shirai T (2002) Down regulation of human X-box Binding Protein 1 (hXBP-1) expression correlates with tumour progression in human prostate cancers. Prostate 50:154–161

    PubMed  CAS  Google Scholar 

  87. Kudo Y, Takata T, Ogawa I, Kaneda T, Sato S, Takekoshi T, Zhao M, Miyauchi M, Nikai H (2000) p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 6:916–923

    PubMed  CAS  Google Scholar 

  88. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV (1998) Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 58:4342–4348

    PubMed  CAS  Google Scholar 

  89. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    PubMed  CAS  Google Scholar 

  90. Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin–proteasome pathway. Genes Dev 11:957–972

    PubMed  CAS  Google Scholar 

  91. Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97:3850–3855

    PubMed  CAS  Google Scholar 

  92. Chen C, Dudenhausen EE, Pan YX, Zhong C, Kilberg MS (2004) Human CCAAT/enhancer-binding protein beta gene expression is activated by endoplasmic reticulum stress through an unfolded protein response element downstream of the protein coding sequence. J Biol Chem 279:27948–27956

    PubMed  CAS  Google Scholar 

  93. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    PubMed  CAS  Google Scholar 

  94. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  95. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    PubMed  CAS  Google Scholar 

  96. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23:2134–2145

    PubMed  CAS  Google Scholar 

  97. Alarcon R, Koumenis C, Geyer RK, Maki CG, Giaccia AJ (1999) Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res 59:6046–6051

    PubMed  CAS  Google Scholar 

  98. Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A, Koromilas AE (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3β. Genes Dev 18:261–277

    PubMed  CAS  Google Scholar 

  99. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, Abcouwer SF (2004) Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem 279:14844–14852

    PubMed  CAS  Google Scholar 

  100. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230:94–99

    PubMed  CAS  Google Scholar 

  101. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108:41–50

    PubMed  CAS  Google Scholar 

  102. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977

    PubMed  CAS  Google Scholar 

  103. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    PubMed  CAS  Google Scholar 

  104. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol Cell Biol 23:5651–5663

    PubMed  CAS  Google Scholar 

  105. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5947

    PubMed  CAS  Google Scholar 

  106. Wang JC (1996) DNA topoisomerases. Ann Rev Biochem 65:635–692

    PubMed  CAS  Google Scholar 

  107. Osheroff N (1998) DNA topoisomerases. Biochim Biophys Acta 1400:1–2

    PubMed  CAS  Google Scholar 

  108. Chen AY, Liu LF (1994) DNA topoisomerases essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218

    PubMed  CAS  Google Scholar 

  109. Nitiss JL, Beck WT (1996) Anti topoisomerase drug action and resistance. Eur J Cancer 32:958–966

    Google Scholar 

  110. Shen J, Hughes C, Chao C, Cai J, Bartels C, Gessner T, Subjeck J (1987) Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci USA 84:3278–3282

    PubMed  CAS  Google Scholar 

  111. Shen JW, Subjeck JR, Lock RB, Ross WE (1989) Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response. Mol Cell Biol 9:3284–3291

    PubMed  CAS  Google Scholar 

  112. Hughes CS, Shen JW, Subjeck JR (1989) Resistance to etoposide (VP-16) induced by three glucose related stresses in Chinese hamster ovary cells. Cancer Res 49:4452–4454

    PubMed  CAS  Google Scholar 

  113. Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52:3648–3654

    PubMed  CAS  Google Scholar 

  114. Chatterjee S, Cheng MF, Berger RB, Berger SJ, Berger NA (1995) Effect of inhibitors of poly(ADP-ribose) polymerase on the induction of GRP78 and subsequent development of resistance to etoposide. Cancer Res 55:868–873

    PubMed  CAS  Google Scholar 

  115. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    PubMed  CAS  Google Scholar 

  116. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915–20924

    PubMed  CAS  Google Scholar 

  117. Swedlow JR, Hirano T (2003) The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 11:557–569

    PubMed  CAS  Google Scholar 

  118. Yun J, Tomida A, Andoh T, Tsuruo T (2004) Interaction between glucose-regulated destruction domain of DNA topoisomerase IIα and MPN domain of Jab1/CSN5. J Biol Chem 279:31296–31303

    PubMed  CAS  Google Scholar 

  119. Oono K, Yoneda T, Manabe T, Yamagishi S, Matsuda S, Hitomi J, Miyata S, Mizuno T, Imaizumi K, Katayama T, Tohyama M (2004) JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem Int 45:765–772

    PubMed  CAS  Google Scholar 

  120. Chatterjee S, Hirota H, Belfi CA, Berger SJ, Berger NA (1997) Hypersensitivity to DNA cross-linking agents associated with up-regulation of glucose-regulated stress protein GRP78. Cancer Res 57:5112–5116

    PubMed  CAS  Google Scholar 

  121. Belfi CA, Chatterjee S, Gosky DM, Berger SJ, Berger NA (1999) Increased sensitivity of human colon cancer cells to DNA cross-linking agents after GRP78 up-regulation. Biochem Biophys Res Commun 257:361–368

    PubMed  CAS  Google Scholar 

  122. Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278:9100–9106

    PubMed  CAS  Google Scholar 

  123. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272:4327–4334

    PubMed  CAS  Google Scholar 

  124. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100:9946–9951

    PubMed  CAS  Google Scholar 

  125. Chandler NM, Canete JJ, Callery MP (2004) Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 8:1072–1078

    PubMed  Google Scholar 

  126. Kamat AM, Karashima T, Davis DW, Lashinger L, Bar-Eli M, Millikan R, Shen Y, Dinney CP, McConkey DJ (2004) The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 3:279–290

    PubMed  CAS  Google Scholar 

  127. Mortenson MM, Schlieman MG, Virudachalam S, Bold RJ (2004) Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line. Cancer Chemother Pharmacol 54:343–353

    PubMed  CAS  Google Scholar 

  128. Ikezoe T, Yang Y, Saito T, Koeffler HP, Taguchi H (2004) Proteasome inhibitor PS-341 down-regulates prostate-specific antigen (PSA) and induces growth arrest and apoptosis of androgen-dependent human prostate cancer LNCaP cells. Cancer Sci 95:271–275

    PubMed  CAS  Google Scholar 

  129. Yang Y, Ikezoe T, Saito T, Kobayashi M, Koeffler HP, Taguchi H (2004) Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci 95:176–180

    PubMed  CAS  Google Scholar 

  130. Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004) The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 3:59–70

    PubMed  CAS  Google Scholar 

  131. Adachi M, Zhang Y, Zhao X, Minami T, Kawamura R, Hinoda Y, Imai K (2004) Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin Cancer Res 10:3853–3862

    PubMed  CAS  Google Scholar 

  132. Denlinger CE, Keller MD, Mayo MW, Broad RM, Jones DR (2004) Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer. J Thorac Cardiovasc Surg 127:1078–1086

    PubMed  CAS  Google Scholar 

  133. Dy GK, Thomas JP, Wilding G, Bruzek L, Mandrekar S, Erlichman C, Alberti D, Binger K, Pitot HC, Alberts SR, Hanson LJ, Marnocha R, Tutsch K, Kaufmann SH, Adjei AA (2005) A phase I and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, velcade), in patients with advanced cancer. Clin Cancer Res 11:3410–3416

    PubMed  CAS  Google Scholar 

  134. Davis NB, Taber DA, Ansari RH, Ryan CW, George C, Vokes EE, Vogelzang NJ, Stadler WM (2004) Phase II Trial of PS-341 in patients with renal cell cancer: a University of Chicago Phase II Consortium Study. J Clin Oncol 22:115–119

    PubMed  CAS  Google Scholar 

  135. Shah MH, Young D, Kindler HL, Webb I, Kleiber B, Wright J, Grever M (2004) Phase II study of the proteasome inhibitor Bortezomib (PS-341) in patients with metastatic neuroendocrine tumours. Clin Cancer Res 10:6111–6118

    PubMed  CAS  Google Scholar 

  136. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, Tsuro T, Shin-ya K (2004) Effect on tumour cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 96:1300–1310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Scriven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scriven, P., Brown, N.J., Pockley, A.G. et al. The unfolded protein response and cancer: a brighter future unfolding?. J Mol Med 85, 331–341 (2007). https://doi.org/10.1007/s00109-006-0150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0150-5

Keywords

Navigation