Skip to main content
Log in

MYST-family histone acetyltransferases: beyond chromatin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Covalently modifying a protein has proven to be a powerful mechanism of functional regulation. N-epsilon acetylation of lysine residues was initially discovered on histones and has been studied extensively in the context of chromatin and DNA metabolism, such as transcription, replication and repair. However, recent research shows that acetylation is more widespread than initially thought and that it regulates various nuclear as well as cytoplasmic and mitochondrial processes. In this review, we present the multitude of non-histone proteins targeted by lysine acetyltransferases of the large and conserved MYST family, and known functional consequences of this acetylation. Substrates of MYST enzymes include factors involved in transcription, heterochromatin formation and cell cycle, DNA repair proteins, gluconeogenesis enzymes and finally subunits of MYST protein complexes themselves. Discovering novel substrates of MYST proteins is pivotal for the understanding of the diverse functions of these essential acetyltransferases in nuclear processes, signaling, stress response and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636

    Article  PubMed  CAS  Google Scholar 

  2. Smith KT, Workman JL (2009) Introducing the acetylome. Nat Biotechnol 27:917–919

    Article  PubMed  CAS  Google Scholar 

  3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  4. Iwabata H, Yoshida M, Komatsu Y (2005) Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 5:4653–4664

    Article  PubMed  CAS  Google Scholar 

  5. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  PubMed  CAS  Google Scholar 

  6. Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536

    PubMed  CAS  Google Scholar 

  7. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  PubMed  CAS  Google Scholar 

  8. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  PubMed  CAS  Google Scholar 

  9. Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14:1017–1024

    Article  PubMed  CAS  Google Scholar 

  10. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  PubMed  CAS  Google Scholar 

  11. Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12:323–328

    Article  PubMed  CAS  Google Scholar 

  12. Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329

    Article  PubMed  CAS  Google Scholar 

  13. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    Article  PubMed  CAS  Google Scholar 

  14. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  PubMed  CAS  Google Scholar 

  15. Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–5407

    Article  PubMed  CAS  Google Scholar 

  16. Thomas T, Voss AK (2007) The diverse biological roles of MYST histone acetyltransferase family proteins. Cell Cycle 6:696–704

    Article  PubMed  CAS  Google Scholar 

  17. Utley RT, Cote J (2003) The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 274:203–236

    PubMed  CAS  Google Scholar 

  18. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32:959–976

    Article  PubMed  CAS  Google Scholar 

  19. Saksouk N, Avvakumov N, Cote J (2008) (de) MYSTification and INGenuity of tumor suppressors. Cell Mol Life Sci 65:1013–1018

    Article  PubMed  CAS  Google Scholar 

  20. Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31:1050–1061

    Article  PubMed  CAS  Google Scholar 

  21. Squatrito M, Gorrini C, Amati B (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16:433–442

    Article  PubMed  CAS  Google Scholar 

  22. Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073–1084

    Article  PubMed  CAS  Google Scholar 

  23. Yang XJ, Ullah M (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26:5408–5419

    Article  PubMed  CAS  Google Scholar 

  24. Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330

    Article  PubMed  CAS  Google Scholar 

  25. Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, Metcalf D, Voss AK (2006) Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev 20:1175–1186

    Article  PubMed  CAS  Google Scholar 

  26. Voss AK, Collin C, Dixon MP, Thomas T (2009) Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 17:674–686

    Article  PubMed  CAS  Google Scholar 

  27. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24:785–796

    Article  PubMed  CAS  Google Scholar 

  28. Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15:3144–3154

    Article  PubMed  CAS  Google Scholar 

  29. Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001) Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 20:7184–7196

    Article  PubMed  CAS  Google Scholar 

  30. Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Cote V, Yang XJ, Gozani O, Kutateladze TG, Cote J (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33:257–265

    Article  PubMed  CAS  Google Scholar 

  31. Miotto B, Struhl K (2006) Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 26:5969–5982

    Article  PubMed  CAS  Google Scholar 

  32. Miotto B, Struhl K (2008) HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22:2633–2638

    Article  PubMed  CAS  Google Scholar 

  33. Miotto B, Struhl K (2010) HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37:57–66

    Article  PubMed  CAS  Google Scholar 

  34. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64

    Article  PubMed  CAS  Google Scholar 

  35. Iizuka M, Matsui T, Takisawa H, Smith MM (2006) Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26:1098–1108

    Article  PubMed  CAS  Google Scholar 

  36. Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25:6798–6810

    Article  PubMed  CAS  Google Scholar 

  37. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25:9175–9188

    Article  PubMed  CAS  Google Scholar 

  38. Kimura A, Umehara T, Horikoshi M (2002) Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32:370–377

    Article  PubMed  Google Scholar 

  39. Suka N, Luo K, Grunstein M (2002) Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32:378–383

    Article  PubMed  CAS  Google Scholar 

  40. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305

    Article  PubMed  CAS  Google Scholar 

  41. Li X, Wu L, Corsa CA, Kunkel S, Dou Y (2009) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36:290–301

    Article  PubMed  CAS  Google Scholar 

  42. Sharma GG, Sairie So, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK (2010) MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and DSB repair. Mol Cell Biol 30:3582–3595

    Article  PubMed  CAS  Google Scholar 

  43. Rea S, Xouri G, Akhtar A (2007) Males absent on the first (MOF): from flies to humans. Oncogene 26:5385–5394

    Article  PubMed  CAS  Google Scholar 

  44. Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB (2004) Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J 23:2258–2268

    Article  PubMed  CAS  Google Scholar 

  45. Buscaino A, Kocher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A (2003) MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 11:1265–1277

    Article  PubMed  CAS  Google Scholar 

  46. Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein–RNA interaction modules. Nature 407:405–409

    Article  PubMed  CAS  Google Scholar 

  47. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285:4268–4272

    Article  PubMed  CAS  Google Scholar 

  48. Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21:811–823

    Article  PubMed  CAS  Google Scholar 

  49. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24:841–851

    Article  PubMed  CAS  Google Scholar 

  50. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    Article  PubMed  CAS  Google Scholar 

  51. Zhou Y, Schmitz KM, Mayer C, Yuan X, Akhtar A, Grummt I (2009) Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing. Nat Cell Biol 11:1010–1016

    Article  PubMed  CAS  Google Scholar 

  52. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27:7028–7040

    Article  PubMed  CAS  Google Scholar 

  53. Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8:91–99

    Article  PubMed  CAS  Google Scholar 

  54. Sapountzi V, Logan IR, Robson CN (2006) Cellular functions of TIP60. Int J Biochem Cell Biol 38:1496–1509

    Article  PubMed  CAS  Google Scholar 

  55. Jha S, Shibata E, Dutta A (2008) Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol Cell Biol 28:2690–2700

    Article  PubMed  CAS  Google Scholar 

  56. Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    Article  PubMed  CAS  Google Scholar 

  57. Fazzio TG, Huff JT, Panning B (2008) An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134:162–174

    Article  PubMed  CAS  Google Scholar 

  58. Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E, Gazzeri S (2006) p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25:4147–4154

    Article  PubMed  CAS  Google Scholar 

  59. Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, Rakowski C, Chatterjee C, Lieberman PM, Lane WS, Blobel GA, McMahon SB (2004) The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol 24:10826–10834

    Article  PubMed  CAS  Google Scholar 

  60. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E (2005) Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 25:10220–10234

    Article  PubMed  CAS  Google Scholar 

  61. Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24:1884–1896

    Article  PubMed  CAS  Google Scholar 

  62. Park J, Kunjibettu S, McMahon SB, Cole MD (2001) The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev 15:1619–1624

    Article  PubMed  CAS  Google Scholar 

  63. Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM, Livingston DM, Amati B (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4:575–580

    Article  PubMed  CAS  Google Scholar 

  64. Martinato F, Cesaroni M, Amati B, Guccione E (2008) Analysis of Myc-induced histone modifications on target chromatin. PLoS One 3:e3650

    Article  PubMed  Google Scholar 

  65. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, Cantor AB, Orkin SH (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143:313–324

    Article  PubMed  CAS  Google Scholar 

  66. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448:1063–1067

    Article  PubMed  CAS  Google Scholar 

  67. Halkidou K, Logan IR, Cook S, Neal DE, Robson CN (2004) Putative involvement of the histone acetyltransferase Tip60 in ribosomal gene transcription. Nucleic Acids Res 32:1654–1665

    Article  PubMed  CAS  Google Scholar 

  68. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102:13182–13187

    Article  PubMed  CAS  Google Scholar 

  69. Ning J, Zheng G, Yang YC (2008) Tip60 modulates PLAGL2-mediated transactivation by acetylation. J Cell Biochem 103:730–739

    Article  PubMed  CAS  Google Scholar 

  70. Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277:25904–25913

    Article  PubMed  CAS  Google Scholar 

  71. Kim MY, Ann EJ, Kim JY, Mo JS, Park JH, Kim SY, Seo MS, Park HS (2007) Tip60 histone acetyltransferase acts as a negative regulator of Notch1 signaling by means of acetylation. Mol Cell Biol 27:6506–6519

    Article  PubMed  CAS  Google Scholar 

  72. Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB (2009) Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem 284:20197–20205

    Article  PubMed  CAS  Google Scholar 

  73. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  PubMed  CAS  Google Scholar 

  74. Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, Chevillard-Briet M, Trouche D (2004) Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol Chem 279:44825–44833

    Article  PubMed  CAS  Google Scholar 

  75. Kurash JK, Lei H, Shen Q, Marston WL, Granda BW, Fan H, Wall D, Li E, Gaudet F (2008) Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol Cell 29:392–400

    Article  PubMed  CAS  Google Scholar 

  76. Sun Y, Xu Y, Roy K, Price BD (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27:8502–8509

    Article  PubMed  CAS  Google Scholar 

  77. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990

    Article  PubMed  CAS  Google Scholar 

  78. Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S, Savard J, Lane WS, Tan S, Cote J (2003) Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 17:1415–1428

    Article  PubMed  CAS  Google Scholar 

  79. Lu PY, Levesque N, Kobor MS (2009) NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem Cell Biol 87:799–815

    Article  PubMed  CAS  Google Scholar 

  80. Doyon Y, Cote J (2004) The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 14:147–154

    Article  PubMed  CAS  Google Scholar 

  81. Altaf M, Auger A, Covic M, Cote J (2009) Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 87:35–50

    Article  PubMed  CAS  Google Scholar 

  82. Hoke SM, Guzzo J, Andrews B, Brandl CJ (2008) Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC Genet 9:46

    Article  PubMed  Google Scholar 

  83. Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K (2008) Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 28:2244–2256

    Article  PubMed  CAS  Google Scholar 

  84. Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22:2062–2074

    Article  PubMed  CAS  Google Scholar 

  85. Scrutton MC, Utter FU (1968) The regulation of glycolysis and gluconeogenesis in animal tissues. Annu Rev Biochem 37:249–302

    Article  CAS  Google Scholar 

  86. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667

    Article  PubMed  CAS  Google Scholar 

  87. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  PubMed  CAS  Google Scholar 

  88. Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19:1176–1179

    Article  PubMed  CAS  Google Scholar 

  89. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217

    Article  PubMed  CAS  Google Scholar 

  91. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  PubMed  CAS  Google Scholar 

  92. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  PubMed  CAS  Google Scholar 

  93. Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37:3969–3980

    Article  PubMed  CAS  Google Scholar 

  94. Yan Y, Harper S, Speicher DW, Marmorstein R (2002) The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat Struct Biol 9:862–869

    Article  PubMed  CAS  Google Scholar 

  95. Berndsen CE, Albaugh BN, Tan S, Denu JM (2007) Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46:623–629

    Article  PubMed  CAS  Google Scholar 

  96. Wang J, Chen J (2010) SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 285:11458–11464

    Article  PubMed  CAS  Google Scholar 

  97. Avvakumov N, Cote J (2007) Functions of myst family histone acetyltransferases and their link to disease. Subcell Biochem 41:295–317

    PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues for work that could not be cited due to space limitation. Work in our laboratory is supported by operating grants from the Canadian Institutes of Health Research (CIHR, MOP-14308/64289). V.S. holds a CIHR fellowship and J.C. a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Côté.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapountzi, V., Côté, J. MYST-family histone acetyltransferases: beyond chromatin. Cell. Mol. Life Sci. 68, 1147–1156 (2011). https://doi.org/10.1007/s00018-010-0599-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0599-9

Keywords

Navigation