Skip to main content
Log in

Elevated overall rates of transmethylation in cell lines from diverse human tumors

  • Rapid Communications
  • Published:
In Vitro Aims and scope Submit manuscript

Editor's Statement This report describes increased rates of transmethylation in a large number of human tumor cell lines in culture, compared to transmethylation rates of several strains of untransformed human fibroblasts. All studies of this kind, using tumor cell lines of epithelial origin and employing as controls “normal” (untransformed) cell strains that are solely of fibroblastic origin, are difficult to interpret and remain open to question. However, the authors' observations that cell lines derived from both sarcomas and carcinomas exhibit enhanced transmethylation rates may strengthen, the case somewhat. More importantly, the potential relationship discussed by the authors of enhanced transmethylation rates to the phenomena of methionine dependence and unbalanced tRNA methylation make the data presented worthy of note. Gordon H. Sato

Summary

In a study of a diverse set of human tumor cell lines previously shown to all have a defect in methionine metabolism (Stern, P. H., Wallace, C. D. and Hoffman, R. M. J. Cellular Physiology119, 29–34, 1984), we demonstrate in this report that all have enhanced overall rates of transmethylation compared to normal human fibroblasts. Transmethylation rates were measured by blocking S-adenosylhomocysteine hydrolase and measuring the AdoHcy which accumulates as a result of transmethylation. The enhanced transmethylation rates may be the basis of the above-mentioned defects in methionine metabolism previously reported in human tumor cells, including the basis of the inability of the majority of the tumor cells to grow when methionine is replaced by homocysteine. The excess and unbalanced tRNA methylation observed for the last 25 years in many types of cancer may be at least in part explained by our results of elevated rates of overall transmethylation in cancer cells. The alteration of such a fundamental process as transmethylation in cancer may be indicative of its importance in the oncogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hoffman, R. M. (1982) In Vitro18, 421–428.

    PubMed  CAS  Google Scholar 

  2. Mecham, J. O., Rowitch, D., Wallace, C. D., Stern, P. H. and Hoffman, R. M. (1983) Biochem. Biophys. Res. Commun.117, 429–434.

    Article  PubMed  CAS  Google Scholar 

  3. Coalson, D. W., Mecham, J. O., Stern, P. H. and Hoffman, R. M. (1982) Proc. Natl. Acad. Sci. USA79, 4248–4251.

    Article  PubMed  CAS  Google Scholar 

  4. Stern, P. H., Mecham, J. O., Wallace, C. D. and Hoffman, R. M. (1983) J. Cellular Physiology117, 9–14.

    Article  CAS  Google Scholar 

  5. Stern, P. H., Wallace, C. D. and Hoffman, R. M. (1984) J. Cellular Physiology119, 29–34.

    Article  CAS  Google Scholar 

  6. Baernstein H. D. (1934) J. Biol. Chem.106, 451–456.

    CAS  Google Scholar 

  7. Stern, P. H.; Mecham, J. O. and Hoffman, R. M. (1982) J. Biochem. & Biophys. Methods7, 83–88.

    Article  CAS  Google Scholar 

  8. Hoffman, J. L. (1979) In: Transmethylation (Usdin, E., Borchardt, R. T. and Creveling, C. R., eds.), Elsevier/North Holland, New York, 181–186.

    Google Scholar 

  9. Guranowski, A., Montgomery, J. A., Cantoni, G. I. and Chiang, P. K. (1981) Biochemistry20, 110–115.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson, G. S. and Chiang, P. K. (1981) Arch. Biochem. Biophys.210, 263–269.

    Article  PubMed  CAS  Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem.193, 265–275.

    PubMed  CAS  Google Scholar 

  12. Hoffman, J. L. (1980) Arch. Biochem. Biophys.205, 132–135.

    Article  PubMed  CAS  Google Scholar 

  13. Cory, J. G. and Mansell, M. M. (1975) Canc. Res.35, 390–396.

    CAS  Google Scholar 

  14. Tisdale, M. J. (1980) Biochim. Biophys. Acta.609, 296–305.

    PubMed  CAS  Google Scholar 

  15. Borek, E., Gehrke, C. and Waalkes, T. (1979) In: Transmethylation (Usdin, E., Borchardt, R. and Creveling, C., eds.), Elsevier/North Holland, New York, 457–464.

    Google Scholar 

  16. Diala, E. S., Cheah, M. S. C., Rowitch, D. and Hoffman, R. M. (1983) J. Natl. Canc. Inst.71, 755–764.

    CAS  Google Scholar 

  17. German, D. C., Bloch, C. A. and Kredich, N. M. (1983) J. Biol. Chem.258, 10997–11003.

    PubMed  CAS  Google Scholar 

  18. Pulciani, S., Santos, E., Lauver, A. V., Long, S. K., Robbins, K. C. and Barbacid, M. (1982) Proc. Natl. Acad. Sci. USA79, 2845–2849.

    Article  PubMed  CAS  Google Scholar 

  19. Kaighn, M., Narayan, K. S., Ohnuki, Y., Lechner, J. and Jones, L. W. (1979) Invest. Urol.17, 16–23.

    PubMed  CAS  Google Scholar 

  20. Fogh, J. (1978) Natl. Canc. Inst. Monogr.49, 5–9.

    Google Scholar 

  21. Soule, H. D., Vazquez, J., Long, A., Albert, S. and Brennan, M. (1973) J. Natl. Canc. Inst.51, 1409–1416.

    CAS  Google Scholar 

  22. Giard, D. J., Aaronson, S. A., Todaro, G. J., et al. (1973) J. Natl. Canc. Inst.51, 1417–1423.

    CAS  Google Scholar 

  23. Fogh, J. and Trempe, G. (1975) In: Human Tumor Cell LinesIn Vitro, J. Fogh, ed., Plenum Press, New York, 115–159.

    Google Scholar 

  24. Bubenik, J., Baresova, M., Viklicky, V., Jakoubkova, J., Sainerova, H. and Donner, J. (1973) Int. J. Cancer11, 765–773.

    Article  PubMed  CAS  Google Scholar 

  25. Mickey, D., Stone, K. R., Wunderli, H., Mickey, G. H., Vollmer, R. T. and Paulson, D. F. (1977) Cancer Res.37, 4049–4058.

    PubMed  CAS  Google Scholar 

  26. Aaronson, S. A., Todaro, G. J. and Freeman, A. E. (1970) Exp. Cell Res.61, 1–5.

    Article  PubMed  CAS  Google Scholar 

  27. Rasheed, S., Nelson-Rees, W. A., Toth, E. M. et al. (1974) Cancer33, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  28. Eva, A., Robbins, K. C., Anderson, P. R., Srinivasan, A., Tronick, S., Reddy, E. P., Ellmore, N. W., Galen, A., Lautenberger, J., Papas, T. S., Westin, E., Wong-Staal, F., Gallo, R. C. and Aaronson, S. A. (1982) Nature295, 116–119.

    Article  PubMed  CAS  Google Scholar 

  29. Fogh, J., Wright, W., and Loveless, J. (1977) J. Natl. Canc. Inst.58, 209–213.

    CAS  Google Scholar 

  30. Biedler, J. L., Helson, L. and Spengler, B. A. (1973) Cancer Res.33, 2643–2652.

    PubMed  CAS  Google Scholar 

  31. Hoffman, R. M. (1984) Biochimica et Biophysica Acta Reviews on Cancer,738, 49–87.

    Article  CAS  Google Scholar 

  32. Nass, G., ed. 1983.Recent Results in Cancer Research, Vol. 84. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by grants 1348A and 1496R1 from the Council for Tobacco Research-USA, Inc., grant CA27564 from the National Cancer Institute, and Research Career Development Award CA00804 from the National Cancer Institute, all to Robert M. Hoffman, and by the George A. Jacobs Memorial Fund for Cancer Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, P.H., Hoffman, R.M. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20, 663–670 (1984). https://doi.org/10.1007/BF02619617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619617

Key words

Navigation