Skip to main content
Log in

Enhancement of ultrasound contrast agent in High-Intensity focused ultrasound ablation

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

High-intensity focused ultrasound (HIFU) is becoming an increasingly attractive modality for ablation. Enhancement of HIFU is an important issue that has been discussed and investigated worldwide. Ultrasound contrast agents are considered to constitute an efficient medium for changing acoustic characteristics and improving energy deposition in the focal region. The role of microbubbles in inducing enhanced heating, cavitation, and other related events in HIFU ablation has been investigated, with the goal of improving coagulation necrosis volume or decreasing acoustic power and exposure duration. Consequently, with the use of ultrasound contrast agents, applications of HIFU are expected to become more efficient, safe, and accurate and to produce fewer adverse effects. This paper reviews studies that have been conducted to investigate the enhancement of ultrasound contrast agents in HIFU ablation through experiments that were carried out in vitro and in vivo; an analysis of results of this enhancement mechanism is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Colombel M, Gelet A. Principles and results of high-intensity focused ultrasound for localized prostate cancer.Prostate Cancer Prostatic Dis. 2004; 7: 289–294.

    Article  PubMed  CAS  Google Scholar 

  2. Clement GT. Perspectives in clinical uses of high-intensity focused ultrasound.Ultrasonics. 2004; 42: 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  3. Tachibana K. Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery.Hum Cell. 2004; 17: 7–15.

    Article  PubMed  Google Scholar 

  4. Kennedy JE, ter Haar GR, Wu F, et al. Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound.Ultrasound Med Biol. 2004; 30: 851–854.

    Article  PubMed  Google Scholar 

  5. Lynn JG, Fry WJ, Meyers R, et al. A new method for the generation and use of focused ultrasound in experimental biology.J Gen Physiol. 1942; 26: 179–193.

    Article  CAS  PubMed  Google Scholar 

  6. Cornejo CJ, Vaezy S, Jurkovich GJ, Paun M, Sharar SR, Martin RW. High-intensity ultrasound treatment of blunt abdominal solid organ injury: an animal model.J Trauma. 2004; 57: 152–156.

    PubMed  Google Scholar 

  7. Foley JL, Little JW, Starr FL 3rd, Frantz C, Vaezy S. Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain.Ultrasound Med Biol. 2004; 30: 1199–1207.

    Article  PubMed  Google Scholar 

  8. Mesiwala AH, Farrell L, Wenzel HJ, et al. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo.Ultrasound Med Biol. 2002; 28: 389–400.

    Article  PubMed  Google Scholar 

  9. Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population.Br J Cancer. 2005; 93: 890–895.

    Article  PubMed  CAS  Google Scholar 

  10. Gelet A, Chapelon JY, Poissonnier L, et al. Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography.Urology. 2004; 63: 625–629.

    Article  PubMed  Google Scholar 

  11. Chan AH, Fujimoto VY, Moore DE, Held RT, Paun M, Vaezy S. In vivo feasibility of imageguided transvaginal focused ultrasound therapy for the treatment of intracavitary fibroids.Fertil Steril. 2004; 82: 723–730.

    Article  PubMed  Google Scholar 

  12. Wang GM, Yang YF, Sun LA, Xu ZB, Xu YQ. An experimental study on high intensity focused ultrasound combined with mitomycin treatment of bladder tumor.Zhonghua Wai Ke Za Zhi. 2003; 41: 897–900.

    PubMed  Google Scholar 

  13. Bailey MR, Couret LN, Sapozhnikov OA, et al. Use of overpressure to assess the role of bubbles in focused ultrasound Iesion shape in vitro.Ultrasound Med Biol. 2001; 27: 695–708.

    Article  PubMed  CAS  Google Scholar 

  14. Wang Z, Wu F, Wang Z. Concept of biological focal field and its importance in tissue resection with high intensity focused ultrasound.J Acoust Soc Am. 1998; 103: 2869–2873.

    Article  Google Scholar 

  15. Melodelima D, Chapelon JY, Theillere Y, Cathignol D. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies.Ultrasound Med Biol. 2004; 30: 103–111.

    Article  PubMed  Google Scholar 

  16. Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation.Ultrasound Med Biol. 2005; 31: 947–956.

    Article  PubMed  Google Scholar 

  17. Lewin PA, Mu C, Umchid S, Daryoush A, El-Sherif M. Acousto-optic, point receiver hydrophone probe for operation up to 100MHz.Ultrasonics. 2005; 43: 815–821.

    Article  PubMed  CAS  Google Scholar 

  18. Poliachik S, Chandler W, Mourad P, et al. Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent.Ultrasound Med Biol. 1999; 25: 991–998.

    Article  PubMed  CAS  Google Scholar 

  19. Feng F, Mal A, Kabo M, Wang JC, Bar-Cohen Y. The mechanical and thermal effects of focused ultrasound in a model biological material.J Acoust Soc Am. 2005; 117: 2347–2355.

    Article  PubMed  Google Scholar 

  20. Wu F, Wang ZB, Chen WZ, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience.Ultrasound Med Biol. 2004; 30: 245–260.

    Article  PubMed  Google Scholar 

  21. Kennedy JE, Wu F, ter Haar GR. High-intensity focused ultrasound for the treatment of liver tumours.Ultrasonics. 2004; 42: 931–935.

    Article  PubMed  CAS  Google Scholar 

  22. Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results.J Urol. 1999; 161: 156–162.

    Article  PubMed  CAS  Google Scholar 

  23. Wu F, Wang ZB, Chen WZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview.Ultrason Sonochem. 2004; 11: 149–154.

    Article  PubMed  CAS  Google Scholar 

  24. Chen SQ, Zhou XD, Tang ZY, Yu Y, Bao SS, Qian DC. Iodized oil enhances the thermal effect of high intensity focused ultrasound on ablating experimental liver cancer.J Cancer Res Clin Oncol. 1997; 123: 639–644.

    Article  Google Scholar 

  25. Kessel D, Jeffers R, Fowlkes JB, Cain C. Porphyrin induced enhancement of ultrasound cytotoxicity.Int J Radiat Biol. 1994; 66: 221–228.

    Article  PubMed  CAS  Google Scholar 

  26. Pietra M, Brini E, Fracassi F, Diana A, Cipone M. Use of the galactose-based contrast agent SHU 508A (Levovist) in renal ultrasonography of the dog.Vet Res Commun. 2005; 29(suppl 2): 305–307.

    Article  PubMed  Google Scholar 

  27. Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound.Ultrasound Med Biol. 1989; 15: 319–333.

    Article  PubMed  CAS  Google Scholar 

  28. Miller DL, Li P, Dou C, Gordon D, Edwards CA, Armstrong WF. Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.Radiology. 2005; 237: 137–143.

    Article  PubMed  Google Scholar 

  29. Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Erythrocytes, as well as microbubble contrast agents, are important factors in improving thermal and therapeutic effects of high-intensity focused ultrasound.Ultrasound Med Biol. 2005; 31: 385–390.

    Article  PubMed  Google Scholar 

  30. Williams AR, Miller DL. The role of non-acoustic factors in the induction and proliferation of cavitational activity in vitro.Phys Med Biol. 1989; 34: 1561–1569.

    Article  PubMed  CAS  Google Scholar 

  31. Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA. Effects of contrast agent infusion rates on thresholds for tissue damage produced by single exposures of high-intensity ultrasound.IEEE Trans Ultrason Ferroelectr Freq Control. 2005; 52: 1121–1130.

    Article  PubMed  Google Scholar 

  32. Brayman AA, Azadniv M, Makin IRS, et al. Effect of a stabilized microbubble echo contrast agent on hemolysis of human erythrocytes exposed to high intensity pulsed ultrasound.Echocardiography. 1995; 12: 13–21.

    Article  Google Scholar 

  33. Miller DL, Thomas RM. Contrast-agent gas bodies enhance hemolysis induced by lithotripter shock waves and high-intensity focused ultrasound in whole blood.Ultrasound Med Biol. 1996; 22: 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  34. Yu T, Wang G, Hu K, Ma P, Bai J, Wang Z. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study.Urol Res. 2004; 32: 14–19.

    Article  PubMed  Google Scholar 

  35. Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue.Eur Radiol. 2005; 15: 1415–1420.

    Article  PubMed  Google Scholar 

  36. Sokka SD, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.Phys Med Biol. 2003; 48: 223–241.

    Article  PubMed  CAS  Google Scholar 

  37. Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA. Microbubble-enhanced cavitation for noninvasive ultrasound surgery.IEEE Trans Ultrason Ferroelectr Freq Control. 2003; 50: 1296–1304.

    Article  PubMed  Google Scholar 

  38. Porter TM, Crum LA, Stayton PS, Hoffman AS. Effect of polymer surface activity on cavitation nuclei stability against dissolution.J Acoust Soc Am. 2004; 116: 721–728.

    Article  PubMed  CAS  Google Scholar 

  39. Takegami K, Kaneko Y, Watanabe T, et al. Heating and coagulation volume obtained with highintensity focused ultrasound therapy: comparison of perflutren protein-type A microspheres and MRX-133 in rabbits.Radiology. 2005; 237: 132–136.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Zhou, X., Tian, X. et al. Enhancement of ultrasound contrast agent in High-Intensity focused ultrasound ablation. Adv Therapy 23, 861–868 (2006). https://doi.org/10.1007/BF02850207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02850207

Keywords

Navigation