Skip to main content
Log in

Calcitonin has direct effects on3[H]-thymidine incorporation and alkaline phosphatase activity in human osteoblast-line cells

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Calcitonin had direct and dose-dependent actions on human osteoblast-line cells (in serum-free monolayer culture) to increase cell proliferation and alkaline phosphatase activity/mg cell protein. Salmon calcitonin increased (human osteosarcoma) SaOS-2 cell proliferation, as evidenced by dose-dependent increases in3[H]-thymidine incorporation into DNA (e.g., 153% of control after 20 h exposure at 0.1 nM,P<0.01), and MTT (thyzolyl blue) reduction/deposition (e.g., 161% of control after 72 h exposure at 0.03 nM). Continuous exposure was not required to elicit these proliferative responses. These effects were not unique to salmon calcitonin or to SaOS-2 cells. Similar effects were seen with human calcitonin (but not heat-inactivated human calcitonin) and with (human osteosarcoma) TE-85 cells and human osteoblast-line cells prepared from femoral heads. In addition to effects on cell proliferation, calcitonin also increased alkaline phosphatase-specific activity in SaOS-2 cells (e.g., 180% of control after 72 h of exposure to 0.1 nM salmon calcitonin,P<.005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azia M (1989) The Calcitonins. Karger, NY

    Google Scholar 

  2. Friedman J, Raisz LG (1965) Thyrocalcitonin, inhibitor of bone resorption in tissue culture. Science 150:1465–1467

    Article  PubMed  CAS  Google Scholar 

  3. MacIntyre I, Evans IMA, Hobitz HHG, Joplin GF, Stevenson JC (1980) Chemistry, physiology and therapeutic applications of calcitonin. Arthritis Rheum 23:1139–1147

    PubMed  CAS  Google Scholar 

  4. Austin LA, Heath H III (1981) Calcitonin, physiology and pathophysiology. N Engl J Med 304:269–278

    Article  PubMed  CAS  Google Scholar 

  5. Austin LA, Heath H III, Go VLW (1978) Regulation of calcitonin secretion in normal man by changes in serum calcium within the physiologic range. J Clin Invest 64:1721–1724

    Google Scholar 

  6. Cooper C, Bolman R, Linehan W, Wells S Jr (1978) Interelationship between Ca, calcemic hormones and gastrointestinal hormones. Recent Prog Horm Res 34:259–283

    PubMed  CAS  Google Scholar 

  7. Parthemore JG, Deftos LJ (1978) Calcitonin secretion in normal human subjects. J Clin Endocrinol Metab 47:184–188

    PubMed  CAS  Google Scholar 

  8. Talmage RV, Grubb SA, Norimatsu H, VanderWiel GJ (1980) Evidence for an important physiological role for calcitonin. Proc Natl Acad Sci USA 77:609–613

    Article  PubMed  CAS  Google Scholar 

  9. Holtrop ME, Raisz LG, Simmons HA (1974) The effects of parathyroid hormone, colchicine and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 60:346–365

    Article  PubMed  CAS  Google Scholar 

  10. Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab 57:819–825

    PubMed  CAS  Google Scholar 

  11. Hedlund T, Hulth A, Johnell O (1983) Early effects of parathyroid hormone and calcitonin on the number of osteoclasts and on serum calcium in rats. Acta Orthop Scand 54:802–804

    Article  PubMed  CAS  Google Scholar 

  12. Arnett TR, Dempster DW (1987) A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology 120:602–608

    PubMed  CAS  Google Scholar 

  13. Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FAO, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. J Clin Invest 78:355–360

    Article  PubMed  CAS  Google Scholar 

  14. Burch WM (1984) Calcitonin stimulates growth and maturation of embryonic chick pelvic cartilage in vitro. Endocrinology 114:1196–1202

    PubMed  CAS  Google Scholar 

  15. Kawashima K, Iwata S, Endo H (1980) Growth stimulative effect of PTH, calcitonin and N6,O2′-dibutryl cAMP on chick embryonic cartilage cultivated in a chemically defined medium. Endocrinol Jpn 27:349–356

    PubMed  CAS  Google Scholar 

  16. Glowacki J, Deftos LJ (1985) The effects of calcitonin on cartilage growth. In: Pecile A (ed) Calcitonin. Elsevier Science Publishers, Amsterdam, pp 205–211

    Google Scholar 

  17. Krane WM, Harris ED, Singer FR, Potts JR (1973) Acute effects of calcitonin on bone formation in man. Metabolism 22:51–58

    Article  PubMed  CAS  Google Scholar 

  18. Weiss RE, Singer FS, Gorn AH, Hofer DP, Nimni ME (1981) Calcitonin stimulates bone formation when administered prior to initiation of osteogenesis. J Clin Invest 68:815–818

    PubMed  CAS  Google Scholar 

  19. Glowacki J, Defftos LJ (1983) The effects of calcitonin on bone formation. In: Gennari C, Segre G (eds) The effects of calcitonins in man. Masson Italia Editori, Milan, pp 133–140

    Google Scholar 

  20. Morel G, Boivin G, David L, Dubois PM, Meunier PJ (1985) Immunocytochemical evidence for endogenous calcitonin and parathyroid hormone in osteoblasts from the calvaria of neonatal mice. Cell Tissue Res 240:89–93

    Article  PubMed  CAS  Google Scholar 

  21. Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ (1988) The anti-bone resorptive agent, calcitonin, also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology 123:159–167

    Article  PubMed  CAS  Google Scholar 

  22. Farley JR, Hall SL, Tarbaux NM (1989) Calcitonin (but not calcitonin gene-related peptide) increases mouse bone cell proliferation in a dose-dependent manner, and increases mouse bone formation, alone and in combination with fluoride. Calcif Tissue Int 45:214–221

    PubMed  CAS  Google Scholar 

  23. Gospodarowicz D, Bialecki H, Greenburg G (1978) Purification of the fibroblast growth factor activity from bovine serum. J Biol Chem 253:3736–3741

    PubMed  CAS  Google Scholar 

  24. Mossman T (1983) Rapid colorometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  25. Denizot F, Lang R (1986) Rapid colorometric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  PubMed  CAS  Google Scholar 

  26. Charmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:943–946

    Google Scholar 

  27. Farley J, Baylink DJ (1986) Skeletal alkaline phosphatase activity as bone formation index in vitro. Metabolism 35:563–571

    Article  PubMed  CAS  Google Scholar 

  28. Rodan GA, Rodan SB (1984) Expression of the osteoblastic phenotype; In: WA Peck (ed) Adv in Bone and Mineral Res Ann 11. Excerpta Medica, Amsterdam, pp 244–285

    Google Scholar 

  29. Wergedal JE, Baylink DJ (1984) Characterization of cells isolated and cultured from human bone. Proc Soc Exp Biol Med 176:60–65

    PubMed  CAS  Google Scholar 

  30. Farley J, Kyeyune-Nyombi E, Tarbaux N, Hall S, Strong DD (1989) Alkaline phosphatase activity from human osteosarcoma cell line SaOS-2: an isoenzyme standard for quantifying skeletal alkaline phosphatase activity in serum. Clin Chem 35:223–229

    PubMed  CAS  Google Scholar 

  31. Wergedal JE, Mohan S, Lundy M, Baylink DJ (1990) Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells. J Bone Miner Res (in press)

  32. Farley J, Tarbaux NM, Hall SL, Baylink D (1988) Evidence that fluoride-stimulated3[H]-thymidine incorporation in embryonic chick calvarial cells is dependent on the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors. Metabolism 37:988–995

    Article  PubMed  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram amounts of protein using the principle of protein-dye binding. Anal Biochem 72:248–255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farley, J.R., Wergedal, J.E., Hall, S.L. et al. Calcitonin has direct effects on3[H]-thymidine incorporation and alkaline phosphatase activity in human osteoblast-line cells. Calcif Tissue Int 48, 297–301 (1991). https://doi.org/10.1007/BF02556147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556147

Key words

Navigation