Skip to main content

Membrane Cholesterol in the Function and Organization of G-Protein Coupled Receptors

  • Chapter
  • First Online:
Book cover Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent ‘nonannular’ binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin1A receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin1A receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin1A receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin1A receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT1A receptor:

5-hydroxytryptamine-1A receptor

7-DHC:

7-dehydrocholesterol

8-OH-DPAT:

8-hydroxy-2(di-N-propylamino)tetralin

CCK:

cholecystokinin

CCM:

cholesterol consensus motif

DPH:

1,6-diphenyl-1,3,5-hexatriene

FRET:

fluorescence resonance energy transfer

GPCR:

G-protein coupled receptor

MβCD:

methyl-β-cyclodextrin

SLOS:

Smith-Lemli-Opitz syndrome

References

  • Albert, A.D., Young, J.E., Yeagle, P.L., 1996, Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1285: 47–55.

    Article  PubMed  Google Scholar 

  • Albert, A.D., Boesze-Battaglia, K., 2005, The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44: 99–124.

    Article  CAS  PubMed  Google Scholar 

  • Angel, T.E., Chance, M.R., Palczewski, K., 2009, Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 106: 8555–8560.

    Article  CAS  PubMed  Google Scholar 

  • Attwood, P.V., Gutfreund, H., 1980, The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas. FEBS Lett. 119: 323–326.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros, J.A., Weinstein, H., 1995, Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci. 25: 366–428.

    Article  CAS  Google Scholar 

  • Bari, M., Battista, N., Fezza, F., Finazzi-Agrò, A., Maccarrone, M., 2005a, Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J. Biol. Chem. 280: 12212–12220.

    Article  CAS  PubMed  Google Scholar 

  • Bari, M., Paradisi, A., Pasquariello, N., Maccarrone, M., 2005b, Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie, N., Gileadi, C., Schramm, M., 1988, Interaction of the β-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur. J. Biochem. 176: 649–654.

    Article  CAS  PubMed  Google Scholar 

  • Bennet, M.P., Mitchell, D.C., 2008, Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexanoic acid acyl chain-containing phospholipids on rhodopsin stability and function. Biophys. J. 95: 1206–1216.

    Article  CAS  Google Scholar 

  • Bittman, R., 1997, Has nature designed the cholesterol side chain for optimal interaction with phospholipids ? Subcell. Biochem. 28: 145–171.

    CAS  PubMed  Google Scholar 

  • Bloch, K.E., 1983, Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14: 47–92.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M.S., Goldstein, J.L., 1999, A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA 96: 11041–11048.

    Article  CAS  PubMed  Google Scholar 

  • Burger, K., Gimpl, G., Fahrenholz, F., 2000, Regulation of receptor function by cholesterol. Cell. Mol. Life Sci. 57: 1577–1592.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., 1992, Membrane penetration depth analysis using fluorescence quenching: a critical review. In: Biomembrane Structure and Function: The State of The Art (Gaber, B.P. and Easwaran, K.R.K., eds.), Adenine Press, Schenectady, NY, pp. 153–163.

    Google Scholar 

  • Chattopadhyay, A., Jafurulla, Md., Kalipatnapu, S., Pucadyil, T.J., Harikumar, K.G., 2005, Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem. Biophys. Res. Commun. 327: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., Paila, Y.D., 2007, Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem. Biophys. Res. Commun. 354: 627–633.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., Paila, Y.D., Jafurulla, Md., Chaudhuri, A., Singh, P., Murty, M.R.V.S., Vairamani, M., 2007, Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: Implications in SLOS. Biochem. Biophys. Res. Commun. 363: 800–805.

    Article  CAS  PubMed  Google Scholar 

  • Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G.F., Thian, F.S., Kobilka, T.S., Choi, H.-J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C., 2007, High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A.J., Bloch, K., 1959, The absence of sterol synthesis in insects. J. Biol. Chem. 234: 2578–2582.

    CAS  PubMed  Google Scholar 

  • Colozo, A.T., Park, P.S.-H., Sum, C.S., Pisterzi, L.F., Wells, J.W., 2007, Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 74: 236–255.

    Article  CAS  PubMed  Google Scholar 

  • Dailey, M.M., Hait, C., Holt, P.A., Maguire, J.M., Meier, J.B., Miller, M.C., Petraccone, L., Trent, J.O., 2009, Structure-based drug design: From nucleic acid to membrane protein targets. Exp. Mol. Pathol. 86:141–150.

    Article  CAS  PubMed  Google Scholar 

  • DeDecker, B.S., O’Brien, R., Fleming, P.J., Geiger, J.H., Jackson, S.P., Sigler, P.B., 1996, The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J. Mol. Biol. 264: 1072–1084.

    Article  CAS  PubMed  Google Scholar 

  • Devaux, P.F., Seigneuret, M., 1985, Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta 822: 63–125.

    CAS  PubMed  Google Scholar 

  • Drews, J., 2000, Drug discovery: a historical perspective. Science 287: 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  • Epand, R.F., Thomas, A., Brasseur, R., Vishwanathan, S.A., Hunter, E., Epand, R.M., 2006, Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry 45: 6105–6114.

    Article  CAS  PubMed  Google Scholar 

  • Epand, R.M., 2006, Cholesterol and the interaction of proteins with membrane domains. Prog. Lipid Res. 45: 279–294.

    Article  CAS  PubMed  Google Scholar 

  • Eroglu, C., Cronet, P., Panneels, V., Beaufils, P., Sinning, I., 2002, Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Rep. 3: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Eroglu, C., Brugger, B., Wieland, F., Sinning, I., 2003, Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc. Natl. Acad. Sci. USA 100: 10219–10224.

    Article  CAS  PubMed  Google Scholar 

  • Fahrenholz, F., Klein, U., Gimpl, G., 1995, Conversion of the myometrial oxytocin receptor from low to high affinity state by cholesterol. Adv. Exp. Med. Biol. 395: 311–319.

    CAS  PubMed  Google Scholar 

  • Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.G., Lefkowitz. R.J., 1988, The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335: 358–360.

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson, R., Schiöth, H.B., 2005, The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67: 1414–1425.

    Article  CAS  PubMed  Google Scholar 

  • Gaoua, W., Wolf, C., Chevy, F., Ilien, F., Roux, C., 2000, Cholesterol deficit but not accumulation of aberrant sterols is the major cause of the teratogenic activity in the Smith-Lemli-Opitz syndrome animal model. J. Lipid Res. 41: 637–646.

    CAS  PubMed  Google Scholar 

  • Gardier, A.M., 2009, Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behav. Pharmacol. 20: 18–32.

    Article  CAS  PubMed  Google Scholar 

  • Gether, U., 2000, Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21: 90–113.

    Article  CAS  PubMed  Google Scholar 

  • Gether, U., Kobilka, B.K., 1998, G protein-coupled receptors. II. Mechanism of agonist activation. J. Biol. Chem. 273:17979–17982.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Klein, U., Reiländer, H., Fahrenholz, F., 1995, Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry 34: 13794–13801.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Burger, K., Fahrenholz, F., 1997, Cholesterol as modulator of receptor function. Biochemistry 36: 10959–10974.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Fahrenholz, F., 2002, Cholesterol as stabilizer of the oxytocin receptor. Biochim. Biophys. Acta 1564: 384–392.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Burger, K., Fahrenholz, F., 2002a, A closer look at the cholesterol sensor. Trends Biochem. Sci. 27: 596–599.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Wiegand, V., Burger, K., Fahrenholz, F., 2002b, Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog. Brain Res. 139: 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Gimpl, G., Gehrig-Burger, K., 2007, Cholesterol reporter molecules. Biosci. Rep. 27: 335–358.

    Article  CAS  PubMed  Google Scholar 

  • Granseth, E., Seppälä, S., Rappi, M., Daleyi, D.O., von Heijne, G., 2007, Membrane protein structural biology-How far can the bugs take us? Mol. Membr. Biol. 24: 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.-P., Chien, E.Y.T., Velasquez, J., Kuhn, P., Stevens, R.C., 2008, A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16: 897–905.

    Article  CAS  PubMed  Google Scholar 

  • Harikumar, K.G., Puri, V., Singh, R.D., Hanada, K., Pagano, R.E., Miller, L.J., 2005, Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J. Biol. Chem. 280: 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J.S., Epps, D.E., Davio, S.R., Kezdy, F.J., 1995, Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry 34: 3851–3857.

    Article  CAS  PubMed  Google Scholar 

  • Heilker, R., Wolff, M., Tautermann, C.S., Bieler, M., 2009, G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov. Today 14: 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer, D., Hannon, J.P., Martin, G.R., 2002, Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71: 533–554.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P., Xu, W., Yoon, S.-I., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y., 2007, Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73: 534–549.

    Article  CAS  PubMed  Google Scholar 

  • Huber, T., Botelho, A.V., Beyer, K., Brown, M.F., 2004, Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys. J. 86: 2078–2100.

    Article  CAS  PubMed  Google Scholar 

  • Insel, P.A., Tang, C.M., Hahntow, I., Michel, M.C., 2007, Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 1768: 994–1005.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, R.F., Cenedella, R.J., Mason, R.P., 1999, Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J. Biol. Chem. 274: 31613–31618.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, R.F., Cenedella, R.J., Mason, R.P., 2001, Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses. J. Biol. Chem. 276: 13573–13578.

    CAS  PubMed  Google Scholar 

  • Jacoby, E., Bouhelal, R., Gerspacher, M., Seuwen, K., 2006, The 7TM G-protein-coupled receptor target family. Chem. Med. Chem. 1: 760–782.

    CAS  Google Scholar 

  • Jamin, N., Neumann, J.M., Ostuni, M.A., Vu, T.K., Yao, Z.X., Murail, S., Robert, J.C., Giatzakis, C., Papadopoulos, V., Lacapere, J.J., 2005, Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19: 588–594.

    Article  CAS  PubMed  Google Scholar 

  • Jones, O.T., Eubanks, J.H., Earnest, J.P., McNamee, M.G., 1988, A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27: 3733–3742.

    Article  CAS  PubMed  Google Scholar 

  • Jones, O.T., McNamee, M.G., 1988, Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27: 2364–2374.

    Article  CAS  PubMed  Google Scholar 

  • Jost, P.C., Griffith, O.H., Capaldi, R.A., Vanderkooi, G., 1973, Evidence for boundary lipids in membranes. Proc. Natl. Acad. Sci. USA 70: 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Kalipatnapu, S., Chattopadhyay, A., 2007, Membrane organization and function of the serotonin1A receptor. Cell. Mol. Neurobiol. 27: 1097–1116.

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky, J., Schramm, M., 1983, Delipidation of a β-adrenergic receptor preparation and reconstitution by specific lipids. J. Biol. Chem. 258: 6841–6849.

    CAS  PubMed  Google Scholar 

  • Kirilovsky, J., Eimerl, S., Steiner-Mordoch, S., Schramm, M., 1987, Function of the delipidated β-adrenergic receptor appears to require a fatty acid or a neutral lipid in addition to phospholipids. Eur. J. Biochem. 166: 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Klein, U., Gimpl, G., Fahrenholz, F., 1995, Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34: 13784–13793.

    Article  CAS  PubMed  Google Scholar 

  • Kobilka, B.K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T.S., Francke, U., Lefkowitz, R.J., Caron, M.G., 1987, An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Kodner, R.B., Summons, R.E., Pearson, A., King, N., Knoll, A.H., 2008, Sterols in unicellular relative of the metazoans. Proc. Natl. Acad. Sci. USA 105: 9897–9902.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, P.E., Labouesse, M., 2002, The sterol-sensing domain: multiple families, a unique role. Trends Genet. 18: 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Lagane, B., Gaibelet, G., Meilhoc, E., Masson, J.-M., Cézanne, L., Lopez, A., 2000, Role of sterols in modulating the human μ-opioid receptor function in Saccharomyces cerevisiae. J. Biol. Chem. 275: 33197–33200.

    Article  CAS  PubMed  Google Scholar 

  • Lange, Y., Steck, T.L., 2008, Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog. Lipid Res. 47: 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A.G., East, J.M., Jones, O.T., McWhirter, J., Rooney, E.K., Simmonds, A.C., 1982, Interaction of fatty acids with the calcium-magnesium ion dependent adenosinetriphosphatase from sarcoplasmic reticulum. Biochemistry 21: 6441–6446.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A.G., 2003, Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612: 1–40.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A.G., 2004, How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666: 62–87.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A.G., 2005, How lipids and proteins interact in a membrane: a molecular approach. Mol. BioSyst. 1: 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Levitt, E.S., Clark, M.J., Jenkins, P.M., Martens, J.R., Traynor, J.R., 2009, Differential effect of membrane cholesterol removal on μ and δ opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. J. Biol. Chem. 284: 22108–22122.

    Google Scholar 

  • Li, H., Papadopoulos, V., 1998, Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139: 4991–4997.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S.H., Civelli, O., 2004, Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann. Med. 36: 204–214.

    Article  CAS  PubMed  Google Scholar 

  • Liscum, L., Underwood, K.W., 1995, Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270: 15443–15446.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Engelman, D.M., Gerstein, M., 2002, Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol. 3: 1–12.

    Google Scholar 

  • Loura, L.M.S., Prieto, M., 1997, Dehydroergosterol structural organization in aqueous medium and in a model system of membranes. Biophys. J. 72: 2226–2236.

    Article  CAS  PubMed  Google Scholar 

  • Marius, P., Alvis, S.J., East, J.M., Lee, A.G., 2005, The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys. J. 89: 4081–4089.

    Article  CAS  PubMed  Google Scholar 

  • Marius, P., Zagnoni, M., Sandison, M.E., East, J.M., Morgan, H., Lee, A.G., 2008, Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. Biophys. J. 94: 1689–1698.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, D., 1990, Lipid-protein interactions in membranes. FEBS Lett. 268: 371–375.

    Article  CAS  PubMed  Google Scholar 

  • Mason, R.P., Tulenko, T.N., Jacob, R.F., 2003, Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim. Biophys. Acta 1610: 198–207.

    Article  CAS  Google Scholar 

  • Milligan, G., Parenti, M., Magee, A.I., 1995, The dynamic role of palmitoylation in signal transduction. Trends Biochem. Sci. 20: 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, D.C., Straume, M., Miller, J.L., Litman, B.J., 1990, Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29: 9143–9149.

    Article  CAS  PubMed  Google Scholar 

  • Monastyrskaya, K., Hostettler, A., Buergi, S., Draeger, A., 2005, The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J. Biol. Chem. 280: 7135–7146.

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen, O.G., Zuckermann, M.J., 2004, What’s so special about cholesterol? Lipids 39:1101–1113.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., Chattopadhyay, A., 1996, Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry 35: 1311–1322.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., Maxfield, F.R., 2004, Membrane domains. Annu. Rev. Cell Dev. Biol. 20: 839–866.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., Chattopadhyay, A., 2005, Monitoring cholesterol organization in membranes at low concentrations utilizing the wavelength-selective fluorescence approach. Chem. Phys. Lipids 134: 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Nature reviews drug discovery GPCR questionnaire participants, The state of GPCR research in 2004. Nat. Rev. Drug Discov. 3: 577–626.

    Article  CAS  Google Scholar 

  • Nguyen, D.H., Taub, D., 2002a, CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168: 4121–4126.

    CAS  PubMed  Google Scholar 

  • Nguyen, D.H., Taub, D., 2002b, Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 99: 4298–4306.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D.H., Taub, D.D., 2003, Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp. Cell Res. 291: 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Niu, S.L., Mitchell, D.C., Litman, B.J., 2002, Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J. Biol. Chem. 277: 20139–20145.

    Article  CAS  PubMed  Google Scholar 

  • Nyholm, T.K.M., Özdirekcan, S., Killian, J.A., 2007, How transmembrane segments sense the lipid environment. Biochemistry 46: 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  • Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., Slotte, J.P., 2002, Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41: 66–97.

    Article  PubMed  Google Scholar 

  • Opekarová, M., Tanner, W., 2003, Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim. Biophys. Acta 1610: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Paila, Y.D., Pucadyil, T.J., Chattopadhyay, A., 2005, The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol. Membr. Biol. 22: 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Paila, Y.D., Murty, M.R.V.S., Vairamani, M., Chattopadhyay, A., 2008, signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz Syndrome. Biochim. Biophys. Acta 1778: 1508–1516.

    Article  CAS  PubMed  Google Scholar 

  • Paila, Y.D., Chattopadhyay, A., 2009, The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj. J. 26: 711–720.

    Google Scholar 

  • Paila, Y.D., Tiwari, S., Chattopadhyay, A., 2009, Are specific nonannular cholesterol binding sites present in G-protein coupled receptors ? Biochim. Biophys. Acta 1788: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Palsdottir, H., Hunte, C., 2004, Lipids in membrane protein structures. Biochim. Biophys. Acta 1666: 2–18.

    Article  CAS  PubMed  Google Scholar 

  • Pandit, S.A., Jakobsson, E., Scott, H.L., 2004, Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys. J. 87: 3312–3322.

    Article  CAS  PubMed  Google Scholar 

  • Pang, L., Graziano, M., Wang, S., 1999, Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38: 12003–12011.

    Article  CAS  PubMed  Google Scholar 

  • Papoucheva, E., Dumuis, A., Sebben, M., Richter, D.W., Ponimaskin, E.G., 2004, The 5-hydroxytryptamine1A receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein. J. Biol. Chem. 279:3280–3291.

    Article  CAS  PubMed  Google Scholar 

  • Park, P.S., Filipek, S., Wells, J.W., Palczewski, K., 2004, Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43: 15643–15656.

    Article  CAS  PubMed  Google Scholar 

  • Pavlidis, P., Ramaswami, M., Tanouye, M.A., 1994, The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell 79: 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Perez, D.M., 2003, The evolutionarily triumphant G-protein-coupled receptor. Mol. Pharmacol. 63: 1202–1205.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, K.L., Premont, R.T., Lefkowitz, R.J., 2002, Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3: 639–650.

    Article  CAS  PubMed  Google Scholar 

  • Pitman, M.C., Grossfield, A., Suits, F., Feller, S.E., 2005, Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J. Am. Chem. Soc. 127: 4576–4577.

    Article  CAS  PubMed  Google Scholar 

  • Politowska, E., Kazmierkiewicz, R., Wiegand, V., Fahrenholz, F., Ciarkowski, J., 2001, Molecular modeling study of the role of cholesterol in the stimulation of the oxytocin receptor. Acta Biochim. Pol. 48: 83–93.

    CAS  PubMed  Google Scholar 

  • Polozova, A., Litman, B.J., 2000, Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys. J. 79: 2632–2643.

    Article  CAS  PubMed  Google Scholar 

  • Porter, F.D., 2008, Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Pöyry, S., Róg, T., Karttunen, M., Vattulainen, I., 2008, Significance of cholesterol methyl groups. J. Phys. Chem. B 112: 2922–2929.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, R., Singh, P., Chattopadhyay, A., 2009, Effect of capsaicin on ligand binding activity of the hippocampal serotonin1A receptor. Glycoconj. J. 26: 733–738.

    Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2004, Cholesterol modulates the ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim. Biophys. Acta 1663: 188–200.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A., 2004, The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem. Biophys. Res. Commun. 320: 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2005, Cholesterol modulates the antagonist-binding function of bovine hippocampal serotonin1A receptors. Biochim. Biophys. Acta 1714: 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Kalipatnapu, S., Chattopadhyay, A., 2005a, The serotonin1A receptor: A representative member of the serotonin receptor family. Cell. Mol. Neurobiol. 25: 553–580.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A., 2005b, Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem. Biophys. Res. Commun. 331: 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2006, Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45: 295–333.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2007, Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol. 23: 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Mukherjee, S., Chattopadhyay, A., 2007, Organization and dynamics of NBD-labeled lipids in membranes analyzed by fluorescence recovery after photobleaching. J. Phys. Chem. B 111: 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Raymond, J.R., Mukhin, Y.V., Gettys, T.W., Garnovskaya, M.N., 1999, The recombinant 5-HT1A receptor: G protein coupling and signaling pathways. Br. J. Pharmacol. 27: 1751–1764.

    Article  Google Scholar 

  • Riethmüller, J., Riehle, A., Grassmé, H., Gulbins, E., 2006, Membrane rafts in host-pathogen interactions. Biochim. Biophys. Acta 1758: 2139–2147.

    Article  PubMed  CAS  Google Scholar 

  • Róg, T., Pasenkiewicz-Gierula, M., 2001, Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: A molecular simulation study. Biophys. J. 81: 2190–2202.

    Article  PubMed  Google Scholar 

  • Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., 2007, What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction. Biophys. J. 92: 3346–3357.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, D.M., Rasmussen, S.G.F., Kobilka, B.K., 2009, The structure and function of G-protein-coupled receptors. Nature 459: 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001, Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys. J. 81: 2122–2134.

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht, J.J., Mielke, T., Vogel, R., Villa, C., Schertler, G.F., 2004, Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23: 3609–3620.

    Article  CAS  PubMed  Google Scholar 

  • Schlyer, S., Horuk, R., 2006, I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11: 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, F., Woodford, J.K., Kavecansky, J., Wood, W.G., Joiner, C., 1995, Cholesterol domains in biological membranes. Mol. Membr. Biol. 12: 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava, S., Paila, Y.D., Dutta, A., Chattopadhyay, A., 2008, Differential effects of cholesterol and its immediate biosynthetic precursors on membrane organization. Biochemistry 47: 5668–5677.

    Article  CAS  PubMed  Google Scholar 

  • Simmonds, A.C., East, J.M., Jones, O.T., Rooney, E.K., McWhirter, J., Lee, A.G., 1982, Annular and nonannular binding sites on the (Ca2+ + Mg2+)-ATPase. Biochim. Biophys. Acta 693: 398–406.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., van Meer, G., 1988, Lipid sorting in epithelial cells. Biochemistry 27: 6197–6202.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., Ikonen, E., 1997, Functional rafts in cell membranes. Nature 387: 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., Ikonen, E., 2000, How cells handle cholesterol. Science 290: 1721–1725.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., Toomre, D., 2000, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., Ehehalt, R., 2002, Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110: 597–603.

    CAS  PubMed  Google Scholar 

  • Singh, P., Paila, Y.D., Chattopadhyay, A., 2007, Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptors: Implications in SLOS. Biochem. Biophys. Res. Commun. 358: 495–499.

    Article  CAS  PubMed  Google Scholar 

  • Sjögren, B., Hamblin, M.W., Svenningsson, P., 2006, Cholesterol depletion reduces serotonin binding and signaling via human 5-HT7(a) receptors. Eur. J. Pharmacol. 552: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Straume, M., Litman, B.J., 1988, Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 27: 7723–7733.

    Article  CAS  PubMed  Google Scholar 

  • Toth, M., 2003, 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 463: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Tulenko, T.N., Chen, M., Mason, P.E., Mason, R.P., 1998, Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J. Lipid Res. 39: 947–956.

    CAS  PubMed  Google Scholar 

  • Villalaín, J., 1996, Location of cholesterol in model membranes by magic-angle-sample-spinning NMR. Eur. J. Biochem. 241: 586–593.

    Article  PubMed  Google Scholar 

  • Wolf, C., Chevy, F., Pham, J., Kolf-Clauw, M., Citadelle, D., Mulliez, N., Roux, C., 1996, Changes in serum sterols of rats treated with 7-dehydrocholesterol-Δ7-reductase inhibitors: comparison to levels in humans with Smith-Lemli-Opitz syndrome. J. Lipid Res. 37: 1325–1333.

    CAS  PubMed  Google Scholar 

  • Wüstner, D., 2007, Fluorescent sterols as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 146: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Yoon, S.-I., Huang, P., Wang, Y., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y., 2006, Localization of the κ opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317: 1295–1306.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., London, E., 2000, The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–849.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Z., Kobilka, B., 2005, Using synthetic lipids to stabilize purified β2 adrenoceptor in detergent micelles. Anal. Biochem. 343: 344–346.

    Article  CAS  PubMed  Google Scholar 

  • Yeagle, P.L., 1985, Cholesterol and the cell membrane. Biochim. Biophys. Acta 822: 267–287.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research, Department of Biotechnology, Life Sciences Research Board, and the International Society for Neurochemistry. Y.D.P. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. A.C. is an Adjunct Professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi, India), and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore, India). A.C. gratefully acknowledges J.C. Bose Fellowship (Dept. Science and Technology, Govt. of India). We thank Sourav Haldar for helpful discussions, Roopali Saxena for help with the figures, Shrish Tiwari for his help in generating Fig. 16.6 and members of our laboratory for critically reading the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paila, Y.D., Chattopadhyay, A. (2010). Membrane Cholesterol in the Function and Organization of G-Protein Coupled Receptors. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_16

Download citation

Publish with us

Policies and ethics