Skip to main content

Glucocorticosteroid Therapy in Childhood Acute Lymphoblastic Leukemia

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 457))

Abstract

Treatment of childhood acute lymphoblastic leukemia has included glucocorticosteroids for almost 50 years. Glucocorticoids are the subject of renewed interest. In one randomized trial, deferral of glucocorticosteroids from the initial month of induction therapy to the second month of therapy decreased event free survival despite preservation of remission induction rate. Dexamethasone in induction and maintenance provides a better event free survival than prednisone for standard risk patients in an isotoxic comparison even though all patients received dexamethasone in Delayed Intensification (protocol II). In a third report, patients with prior glucocorticosteroid therapy who achieved remission with subsequent multiagent therapy had a relapse rate similar to that of patients in second remission after failure of multiagent therapy. In vitro and in vivo response of leukemic cells to glucocorticosteroids is highly predictive of outcome. At relapse, loss of in vitro sensitivity to glucocorticosteroids is common and out of proportion to the loss of sensitivity to other agents. Glucocorticoid induced cell kill does not require p53 function. Investigation of leukemic cell lines finds that glucocorticosteroid resistance is most commonly linked to altered receptor number or function. Not all ligands are equivalent. Cortivazol, a pyrazolosteroid, may bind to altered receptor in some cases and induce apoptosis in dexamethasone resistant leukemic cells. Host response to exogenous glucocorticosteroid also varies. Associations between host sensitivity, disease sensitivity, and glucocorticosteroid side effects like avascular necrosis of bone remain to be investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson Brad E: Apoptosis and steroid hormones. Mol Endocrinol; 1994; 8:665–673.

    Article  PubMed  CAS  Google Scholar 

  2. Gaynon PS and Lustig RH: The use of glucocorticoids in acute lymphoblastic leukemia of childhood. J Pediatr Hematol Oncol 1995; 7:1–12, 1995.

    Article  Google Scholar 

  3. Riehm H, Reiter A, Schrappe M, Berthold F, Dopfer R, Gerein V, Ludwig R, Ritter J, Stollmann B, and Henze G: Die corticosteroid-abhängige Dezimierung der Leukämiezelizahl im Blut als Prognosefaktor bei der akuten lymphoblastischen Leukämie im Kindesalter (Therapiestudie ALL-BFM 83). Klin Pädiatr 1986; 199:151–160.

    Article  Google Scholar 

  4. Riehm H, Feickert H-J, Schrappe M, Henze G, Schellong G.T herapy results in five ALL-BFM studies since 1970: Implications of risk factors for prognosis. Hamatol Bluttransfus 1987; 30:139–146.

    CAS  Google Scholar 

  5. Riehm H, Gadner H, Henze G, Kornhuber B, Lampert F, Niethammer D, Reiter A, Schellong G: Results and significance of six randomized trials in four consecutive ALL-BFM studies. Haematol Blood Transfus 1990; 33:439–450.

    PubMed  CAS  Google Scholar 

  6. Schrappe M, Reiter A, Sauter S, Ludwig WD, Wörmann B, Harbott J, Bender-Götze C, Dörffel W, Dopfer R, Frey E, Havers W, Henze G, Kühl J, richter R, Ritter J, Treuner J, Zintl F, Odenwald E, Weite K, and Riehm J: Konzeption und Zwischenergebnis der Therapiestudie ALL-BFM 90 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen: die Bedeutung des initialen Therapieansprechens in Blut und Knochenmark. Klin Pädiatr 1994; 206:208–221.

    Article  PubMed  CAS  Google Scholar 

  7. Aricò M, Basso G, Mandelli F, Rizzari C, Colella R, Barisone E, Zanesco L, Rondelli R, Pession A, Masera G: Good steroid response in vivo predicts a favorable outcome in children with T-cell acute lymphoblastic leukemia. Cancer 1995; 75: 1995, 1684–1693.

    Article  PubMed  Google Scholar 

  8. Ekert H, Waters KD, Matthews RN, Smith PJ, O’Regan P, Rice M, Toogood I, Mauger D, and Tauro G: A randomized trial of corticosteroid and non-corticosteroid containing regimens in induction therapy of childhood ALL. Cancer Ther Control 1990; 1:87–95.

    Google Scholar 

  9. Revesz T, Kardos G, Kajtar P, Schuler D: The adverse effect of prolonged prednisolone pretreatment in children with acute lymphoblastic leukemia. Cancer 1985; 55:1637–1640.

    Article  PubMed  CAS  Google Scholar 

  10. Pieters R, Kaspers GJL, Klumper E, and Veerman AJP: Clinical relevance of in vitro drug resistance testing in childhood acute lymphoblastic leukemia: the state of the art. Med Pediatr Oncol 22:299–308, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Hongo T, Yajima S, Sakurai M, Horikoshi Y, and Hanada R: In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood 1997; 89:2959–2965.

    PubMed  CAS  Google Scholar 

  12. Pieters R, Kaspers GJL, van Wering ER, van der Does-van den Berg A, Veerman AJP: Prospective study of the in vitro prednisolone resistance in childhood acute lymphoblastic leukemia: A new risk factor in BFM-oriented treatment. Blood 1993; 82: 194a (abstract #762).

    Google Scholar 

  13. Kaspers GJL, Veerman AJP, Popp-Snijders C, Lomecky M, Van Zantwijk CH, Swinkels LMJW, van wering ER, Pieters R:. Comparison of the antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol 27:114–121, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Maung ZT, Reid MM, Matheson E, Taylor PRA, Proctor SJ, and Hall AG: Corticosteroid resistance is increased in lymphoblasts from adults compared with children: preliminary results of the in vitro drug sensitivity study in adults with acute lymphoblastic leukemia. Br J Haematol 1995; 91:93–100.

    Article  PubMed  CAS  Google Scholar 

  15. Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJL, van Wering ER, Veerman AJP: Infants acute lymphoblastic leukemia cells are highly resistant to prednisolone and asparaginase in vitro but highly sensitive to cytosine arabinoside (AraC). Med Pediatr Oncol 1997; 29: 335 (abstract #O70).

    Article  Google Scholar 

  16. Klumper E, Pieters R, Veerman AJP, Huismans DR, Loonen AH, Hählen K, Kaspers GJL, van Wering ER, Hartmann R, and Henze G: In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86:3861–3868, 1995.

    PubMed  CAS  Google Scholar 

  17. Thompson EB and Harmon JM: Glucocorticoid receptors and glucocorticoid resistance in human leukemia in vivo and in vitro. In Chrousos GP, Loriaux DL, Lipsett MB, eds. Steroid Hormone Resistance, Newe York: Plenum Publishing, 1986:111–127.

    Chapter  Google Scholar 

  18. Harmon JM and Thompson EB: Glucocorticoid resistance in leukemic cells. In Kessel D, ed. Boca Raton: CRC Press, Inc, 1988:385–402.

    Google Scholar 

  19. Norgaard P and Skovgaard Poulsen H: Glucocorticoid receptors in human malignancies. Ann Oncol 1991; 2:541–557.

    PubMed  CAS  Google Scholar 

  20. Kaspers GJL, Pieters R, Klumper E, de Waal FC, Veerman AJP: Glucorticoid resistance in childhood leukemia. Leukemia Lymph 1994; 13:187–201.

    Article  CAS  Google Scholar 

  21. Moalli PA and Rosen ST: Glucocorticoid receptors and resistance to glucocorticoids in hematologic maligancies. Leukemia Lymph 1994; 15:363–374.

    Article  CAS  Google Scholar 

  22. Schmidt TJ: Analyses of glucocorticoid receptor structure and function using the human CEM acute lymphoblastic leukemia T-cell line. In Gametchu B (ed): Glucocorticoid Receptor Structure and Leukemic Cell Responses, R.G. Landes Co., 1995:125–154.

    Google Scholar 

  23. Palmer LA, Hukku B, Harmon JM: Human glucocorticoid receptor gene following exposure to cancer chemotherapeutic drugs and chemical mutagens. Cancer Res 1992; 52:6612–6618.

    PubMed  CAS  Google Scholar 

  24. Powers JH, Hillmann AG, Tang DC, and Harmon JM: Cloning and expression of mutant glucocortioid receptors from glucocorticoid-sensitive and resistant human leukemic cells. Cancer Res 1993; 53:4059–4065.

    PubMed  CAS  Google Scholar 

  25. Strasser-Wozak EMC, Hattmannstorfer R, Hala M, Hartmann BL, Fiegel M, Geley S, Kofier R: Splice site mutation in the glucocorticoid receptor gene causes resistance to glucocorticoid-induced apoptosis in a human acute leukemic cell line. Cancer Res 1995; 55:348–353.

    PubMed  CAS  Google Scholar 

  26. Ray DW: Molecular mechanisms of glucocorticoid resistance. 1996; 149:1–5.

    CAS  Google Scholar 

  27. Distelhorst CW, Benutto BM, Grffith RC: A single common electrophoretic abnormality of glucocortioid receptors in human leukemia cells. Blood 1985; 66:679–685.

    PubMed  CAS  Google Scholar 

  28. Costlow ME and Pui CH: Glucocorticoid receptors in childhood acute lymphocytic leukemia. Cancer Res 1982; 42:4801–4806.

    PubMed  CAS  Google Scholar 

  29. Pui CH, Dahl GV, Rivera G, Murphy SB, and Costlow ME: The relationship of blast cell glucocorticoid receptor levels to response to single agent steroid trial and remission response in children with acute lymphoblastic leukemia. Leukemia Res 1984; 8:579–585.

    Article  CAS  Google Scholar 

  30. Pui CH and Costlow ME: Sequential studies of lymphoblast glucocorticoid receptor levels at diagnosis and relapse in childhood leukemia: an update. Leukemia Res 1986; 10:227–229.

    Article  CAS  Google Scholar 

  31. Quddus FF, Leventhal BG, Boyett JM, Pullen DJ, Crist WM, and Borowitz MJ: Glucocorticoid receptors in immunological subtypes of childhood acute lymphoblastic leukemia cells: a Pediatric Oncology Group study. Cancer Res 1985; 45:6482–6486.

    PubMed  CAS  Google Scholar 

  32. Kato GJ, Quddus FF, Shuster JJ, Boyett J, Pullen JD, Borowitz MJ, Whitehead VM, Crist WM, Leventhal BG: High glucocorticoid receptor content of leukemic blasts is a favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood 1993; 82:2304–2309.

    PubMed  CAS  Google Scholar 

  33. Lamberts SWJ, Huizenga ATM, de Lange P, de Jong FH, and Koper JW: Clinical aspects of glucocorticoid sensitivity. Steroids 1996; 61:157–160.

    Article  PubMed  CAS  Google Scholar 

  34. Chrousos GP, Castro M, Leung DYM, Webster E, Kino T, Bamberger C, Elliot S, Stratakis C, and Karl M: Molecular mechanisms of glucocorticoid resistance/ hypersensitivity. Am J Resp Crit Care Med 1996; 154; s39–s44.

    Article  PubMed  CAS  Google Scholar 

  35. Bronnegard M, and Carlstedt-Duke J: The genetic basis of glucocorticoid resistance. Trends Endocrinol Metab 1995; 6:160–164.

    Article  PubMed  CAS  Google Scholar 

  36. Werner S and Brönnegård M: Molecular basis of glucocorticoid resistance syndromes. Steroids 1996; 61:216–221.

    Article  PubMed  CAS  Google Scholar 

  37. Hurley DM, Accili D, Stratakis CA, Karl M, Vamvakopoulos N, Rorer E, Constantine K, Taylor SI, and Chrousos GP: Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 1991; 87:680–687.

    Article  PubMed  CAS  Google Scholar 

  38. Karl M, Lamberts SWJ, Detera-Wadleigh SD, Encio IJ, Statakis CA, Hurley DM, Accili D, and Chrousos GP: Familial glucocortioid resistance caused by a splice site deletion in the human glucocortioid receptor gene. J Clin Endocrinol Metab 1993; 76:683–689.

    Article  PubMed  CAS  Google Scholar 

  39. Koper JW, Stolk RP, de Lange P, Huizenga NATM, Molijn GJ, Pols HAP, Grobbee DE, Karl M, de Jong FH, Brinkmann AO, Lamberts SWJ: Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Hum Genet 1997; 99:663–668.

    Article  PubMed  CAS  Google Scholar 

  40. Huizenga NATM, Koper JW, de Lange P, Pols HAP, Stolk RP, Burger H, Grobbee DE, Brinkmann AO, de Jong FH, and Lamberts SWJ: A polymorphism in the glucocortoid receptor gene may be associated with an increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 1998; 83:144–151.

    Article  PubMed  CAS  Google Scholar 

  41. Murphy RG and Greenberg ML. Osteonecrosis in pediatric patients with acute lymphoblastic leukemia. Cancer 1990; 65:1717–1721.

    Article  PubMed  CAS  Google Scholar 

  42. Hanif I, Mahmoud H, and Pui C-H. Avascular femoral head necrosis in pediatric cancer patients. Med Pediatr Oncol 1993; 21:655–660.

    Article  PubMed  CAS  Google Scholar 

  43. Chan-Lam D, Prentice AG, Copplestone JA, Weston M, Williams M, and Hutton CW. Avascular necrosis of bone following intensified steroid therapy for acute lymphoblastic leukaemia and high-grade malignant lymphoma. Br J Haematol 1994; 86:227–230.

    Article  PubMed  CAS  Google Scholar 

  44. Nazareth LV, Harbour DV, and Thompson EB: Mapping the human glucocorticoid receptor for leukemic cell death. J Biol Chem 1991; 266:12976–12980.

    PubMed  CAS  Google Scholar 

  45. Baulieu EE; The connection between steroid receptors and stress proteins (hsp 90). In Jasmin G, Proschek L (eds): Stress Revisited 2. Systemic Effects of Stress. Methods Achieve Exp Pathol. Basel Karger 1991, vol 15, pp 104–125.

    Google Scholar 

  46. Distelhorst CW, Benutto BM, and Bergamini RA: Effect of cell cycle position on dexamethasone binding by mouse and human lymphoid cell lines: correlation between an increase in dexamethasone binding during S phase and dexamethasone sensitivity. Blood 1984; 63:105–113.

    PubMed  CAS  Google Scholar 

  47. Bodwell JE, Hu JM, Hu LM, Munck A: Glucocorticoid receptors: ATP and cell cycle dependence, phosphorylation, and hormone resistance. Am J Resp Crit Care Med 1996; 154:52–56.

    Article  Google Scholar 

  48. Thompson EB, Nazareth LV, Thulasi R, Ashraf J, Harbour D, and Johnson BH: Glucocorticoids in malignant lymphoid cells: gene regulation and the minimum receptor fragment for lysis. J Steroid Biochem Molec Biol 1992; 41:273–282.

    Article  PubMed  CAS  Google Scholar 

  49. Thulasi R, Harbour DV, and Thompson EB: Suppression of c-myc is a critical step in glucocorticoid-induced human leukemic cell lysis. J Biol Chem 1993; 268:18306–18312.

    PubMed  CAS  Google Scholar 

  50. Smets L: Programmed cell death (apoptosis) and response to anticancer drugs. Anti-Cancer Drugs 1994; 5:3–9

    Article  PubMed  CAS  Google Scholar 

  51. Annun YA: Apoptosis and the dilemma of cancer chemotherapy. Blood 1997; 89:1845–1853.

    Google Scholar 

  52. Alnemri ES, Fernandes TF, Haldar S, Croce CM, Litwack G: Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 1992; 52:491–495, 1992.

    PubMed  CAS  Google Scholar 

  53. Lotem J, Sachs L: Regulation by bcl-2, c-myc, and p53 of suseptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and-defective myeloid leukemic cells. Cell Growth & Differentiation 1993: 4:41–47.

    CAS  Google Scholar 

  54. Distelhorst CW and Dubyak G: Role of calcium in glucocorticosteroid-induced apoptosis of thymocytes and lymphoma cells: resurrection of old theories by new findings. Blood 1998, 91:731–734.

    PubMed  CAS  Google Scholar 

  55. McConkey DJ, Orrenius S, Okret S, Jondal M: Cyclic AMP potentiates glucocorticoid-induced endogenous endonulease activation in thymocytes. FASEB J 1993; 7:580–585.

    PubMed  CAS  Google Scholar 

  56. Pieters R, Klumper E, Veerman AJP: Can nonradioactive meta-iodobenzylguanidine (MIBG) restore resistance to glucocorticoids in lymphoblastic leukemia?. Med Pediatr Oncol 1996; 27:229 (abstract #O72).

    Google Scholar 

  57. Gruol DJ and Bourgeois S: Expression of the mdr1 p-glycoprotein gene: a mechanism of escape from glucocorticod-induced apoptosis. Biochem Cell Biol 1994; 72:561–571.

    Article  PubMed  CAS  Google Scholar 

  58. Kojika S, Sugita K, Inukai T, Saito M, Iijima K, Tezuka T, Goi K, Shirashi K, Mori T, Okazaki T, Kagami K, Ohyama K, and Nakazawa S: Mechanisms of glucocorticoid resistance in human leukemic cells: implications of abnormal 90 and 70 kDa heat shock proteins. Leukemia 1996; 10:994–999.

    PubMed  CAS  Google Scholar 

  59. Balis FM, and Poplack DG. Central nervous system pharmacology of antileukemic drugs. Am J Pediatr Hematol/Oncol 1989; 11:74–86.

    Article  CAS  Google Scholar 

  60. Ito C, Evans WE, McNinch L, Coustan-Smith E, Mahmoud H, Pui CH, and Compana D: Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol 1996; 14:2370–2376.

    PubMed  CAS  Google Scholar 

  61. Jones B, Freeman AI, Shuster JJ, Jacquillat C, Weil M, Pochedly C, Sinks L, Chevalier L, Maurer HM, Koch K, Falkson G, Patterson R, Seligman B, Sartorius J, Kung F, Haurani F, Stuart M, Burgert EO, Ruymann F, Sawitsky A, Forman E, Pluess H, Truman J, Hakami N, Glidewell O, Glicksman AS, and Holland JF: Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med Pediatr Oncol 1991; 19:269–275.

    Article  PubMed  CAS  Google Scholar 

  62. Veerman AJP, Hählen K, Kamps WA, Van Leeuwen EF, de Vaan GAM, Van Wering ER, Vasnderdoes-Vanderberg A, Solbu G, and Suciu S:. Dutch Childhood Leukemia Study Group: Early results of Study ALL VI (1984–1988) Haematol Blood Transfus 1990; 33:473–477.

    PubMed  CAS  Google Scholar 

  63. Henze G, Langermann H-J, Brämswig J, Breu H, Gadner H, Schellong G, Weite K, and Riehm H. Ergebnisse der Studie BFM 76/79 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen. Klin Pädiat 1981; 193:145–154.

    Article  CAS  Google Scholar 

  64. Gaynon PS, Bleyer WA, Steinherz PG, Finklestein JZ, Littman PS, Miller DR, Reaman GH, Sather HN, and Hammond GD: Modified BFM therapy for children with previously untreated acute lymphjoblastic leukemia and unfavorable presenting features: report fo the Children’s Cancer Study Group Study CCG-193P. Am J Pediatr Hematol Oncol 1988; 10:42–50.

    Article  PubMed  CAS  Google Scholar 

  65. Tubergen DG, Gilchrist GS, O’Brien RT, Coccia PF, Sather HN, Waskerwitz MJ, and Hammond GD. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: A Childrens Cancer Group Phase III trial. J Clin Oncol 1993; 11:527–537.

    PubMed  CAS  Google Scholar 

  66. Mastrangelo R, Poplack D, Bleyer A, Riccardi R, Sather H, and D’Angio G. Report and recommendations of the Rome Workshop concerning poor-prognosis acute lymphoblastic leukemia in children: Biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 1986; 14:191–194.

    Article  PubMed  CAS  Google Scholar 

  67. Smith M, Arthur D, Camitta B, Carroll W, Crist W, Gaynon P, Hgelber R, Heerema N, Korn EL, Link M, Murphy S, Pui CH, Pullen J, Reaman G, Sallan SE, Sather H, Shuster J, Simon R, Trigg M, Tubergen D, Uckun F, and Ungeleider R: Uniform approach for risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996; 14:14–18.

    CAS  Google Scholar 

  68. Bostrom B, Gaynon PS, Sather H, Gold S, Hutchinson RJ, Provisor A, and Trigg M: Dexamethasone (DEX) decreases central nervous system (CNS) relapse in lower risk acute lymphoblastic leukemia (ALL). Proc Am Soc Clin 1998; 17: 5270 (abstract #2024).

    Google Scholar 

  69. Thompson EB, Srivastava D, and Johnson BH: Interactions of the phenylpyrazolo-steroid cortivazol with glucocorticoid receptors in steroid-sensitive and-resistant human leukemic cells. Cancer Res 1989; 49 (suppl): 2253s–2258s.

    PubMed  CAS  Google Scholar 

  70. Srivastava D and Thompson EB: Two glucocorticoid binding sites on the human glucocortoicoid receptor. Endocrinol 1990; 127:1770–1778.

    Article  CAS  Google Scholar 

  71. Harmon JM, Schmidt TJ, and Thompson EB: Deacylcortivazol acts through glucocorticoid receptors. J Steroid Biochem 1981; 14:273–279.

    Article  PubMed  CAS  Google Scholar 

  72. Harmon JM, Schmidt TJ, and Thompson EB: Non-glucocorticoid receptor-mediated effects of the potent glucocorticoid deacylcortivazol. Cancer Res 1982; 42:2110–2114.

    PubMed  CAS  Google Scholar 

  73. Schlechte JA and Schmidt TJ: Use of [3H]cortivazol to characterize glucoorticoid receptors in a dexamethasone-resistant human leukemic cell line. J Clin Endocrinol Metab 64:441–446, 1987.

    Article  PubMed  CAS  Google Scholar 

  74. Ashraf J, Kunapuli S, Chilton D, and Thompson EB: Cortivazol mediated induction of glucocorticoid messenger ribonucleic acid in wild-type and dexamethasone-resistant human leukemic (CEM) cell lines. J Steroid Biochem Molec Biol 38:561–568, 1991.

    Article  PubMed  CAS  Google Scholar 

  75. Juneja HS, Harvey WH, Brasher WK, and Thompson EB: Successful in vitro purging of leukemia blasts from marrow by cortivazol, a pyrazolosteroid: a preclinical study for autologous transplantation in acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Leukemia 9:1771–1778, 1995.

    PubMed  CAS  Google Scholar 

  76. Kralli A, Bohen SP, Yamamoto KR: LEM1, and ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones. Proc Natl Acad Sci (USA) 1995; 92:4701–4705.

    Article  CAS  Google Scholar 

  77. Lilleyman JS and Lennard L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 343:1188–1190, 1994.

    Article  PubMed  CAS  Google Scholar 

  78. Bostrom B and Erdmann GR. Association of relapse with mercaptopurine (6MP) cellular pharmacokinetics (CPK) in children with acute lymphoblastic leukemia (ALL). Proc Am Soc Clin Oncol 1992; 11: 278.

    Google Scholar 

  79. Cheung N-KV, Chau IY, and Coccia PR Antibody response to Escherichia coli L-asparaginase. Am J Pediatr Hematol Oncol 1986; 8:99–104.

    PubMed  CAS  Google Scholar 

  80. Kurtzberg J, Asselin B, Pollack B, Bernstein M, Buchanan G, and the Pediatric Oncology Group. Peg-L-asparaginase (PEGasp) vs Native E coli asparaginase (asp) for reinduction of relapsed acute lymphoblastic leukemia (ALL): POG #8866 Phase II trial. ASCO Proc 1993; 12: 325.

    Google Scholar 

  81. Abshire T, Pollock B, Billett A, Bradley P, and Buchanan G. Weekly polyethylene glycol conjugated (PEG) L-asparaginase (ASP) produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia (rALL): A Pediatric Oncology Group (POG) study 9310. ASCO Proc 1995; 14: 344.

    Google Scholar 

  82. Nachman J, Sather HN, Gaynon PS, Lukens JN, Wolff L, and Trigg ME: Augmented Berlin-Frankfurt-Münster therapy abrogates the adverse prognostic significance of slow early response to induction chemotherapy for children and adolescents with acute lymphoblastic leukemia and unfavorable presenting features: a report from the Children’s Cancer Group. J Clin Oncol 1997; 15:2222–2230, 1997.

    PubMed  CAS  Google Scholar 

  83. Nachman J, Sather H, Lukens J, Gaynon P, Wolff L, Cherlow J, and Trigg M: Augmented Berlin-Frankfurt-Münster (a-BFM) chemotherapy improves event free survival (EFS) for children with acute lymphoblastic leukemia and unfavorable presenting features who show a slow early response (ser) to induction therapy. Blood 1997; 90:558a, 1997.

    Google Scholar 

  84. Imamura J, Miyoshi I, and Koeffler HP: p53 in hematologic malignancies. Blood 1994; 84:2412–2421.

    PubMed  CAS  Google Scholar 

  85. Harris CC: Structure and function of the p53 tumor suppressor gene: clues for rationale cancer therapeutic strategies. J Natl Cancer Inst 1996; 88:1422–1455.

    Google Scholar 

  86. Marks DI, Kurz BW, Link MP, Ng E, Shuster JJ, Lauer SJ, Brodsky I, and Haines DS: High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood 1996; 87:1155–1161.

    PubMed  CAS  Google Scholar 

  87. Diccianni MB, Yu J, Hsiao M, Mukherjee S, Shao L-E, Yu AL. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood 1994; 84:3105–3112.

    PubMed  CAS  Google Scholar 

  88. Kawamura M, Kikuchi A, Kobayashi S, Hanada R, Yamamoto K, Horibe K, Shikano T, Ueda K, Hayashi K, Sekiya T, and Hayashi Y: Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood 1995; 85:2546–2552.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaynon, P.S., Carrel, A.L. (1999). Glucocorticosteroid Therapy in Childhood Acute Lymphoblastic Leukemia. In: Kaspers, G.J.L., Pieters, R., Veerman, A.J.P. (eds) Drug Resistance in Leukemia and Lymphoma III. Advances in Experimental Medicine and Biology, vol 457. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4811-9_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4811-9_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7180-9

  • Online ISBN: 978-1-4615-4811-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics