Skip to main content

Picornaviruses

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 343))

Abstract

The picornavirus family consists of a large number of small RNA viruses, many of which are significant pathogens of humans and livestock. They are amongst the simplest of vertebrate viruses comprising a single stranded positive sense RNA genome within a T = 1 (quasi T = 3) icosahedral protein capsid of approximately 30 nm diameter. The structures of a number of picornaviruses have been determined at close to atomic resolution by X-ray crystallography. The structures of cell entry intermediate particles and complexes of virus particles with receptor molecules or antibodies have also been obtained by X-ray crystallography or at a lower resolution by cryo-electron microscopy. Many of the receptors used by different picornaviruses have been identified, and it is becoming increasingly apparent that many use co-receptors and alternative receptors to bind to and infect cells. However, the mechanisms by which these viruses release their genomes and transport them across a cellular membrane to gain access to the cytoplasm are still poorly understood. Indeed, detailed studies of cell entry mechanisms have been made only on a few members of the family, and it is yet to be established how broadly the results of these are applicable across the full spectrum of picornaviruses. Working models of the cell entry process are being developed for the best studied picornaviruses, the enteroviruses. These viruses maintain particle integrity throughout the infection process and function as genome delivery modules. However, there is currently no model to explain how viruses such as cardio- and aphthoviruses that appear to simply dissociate into subunits during uncoating deliver their genomes into the cytoplasm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337:709–716

    Article  CAS  PubMed  Google Scholar 

  • Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9:181–186

    CAS  PubMed  Google Scholar 

  • Andries K, Dewindt B, Snoeks J, Wouters L, Moereels H, Lewi PJ, Janssen PA (1990) Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 64:1117–1123

    CAS  PubMed  Google Scholar 

  • Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387

    Article  CAS  PubMed  Google Scholar 

  • Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E (1987) Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 84:21–25

    Article  CAS  PubMed  Google Scholar 

  • Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3:1651–1669

    Article  CAS  PubMed  Google Scholar 

  • Baxt B (1987) Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res 7:257–271

    Article  CAS  PubMed  Google Scholar 

  • Bayer N, Schober D, Prchla E, Murphy RF, Blaas D, Fuchs R (1998) Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 72:9645–9655

    CAS  PubMed  Google Scholar 

  • Bayer N, Schober D, Huttinger M, Blaas D, Fuchs R (2001) Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. J Biol Chem 276:3952–3962

    Article  CAS  PubMed  Google Scholar 

  • Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000a) Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354

    Article  CAS  PubMed  Google Scholar 

  • Belnap DM, McDermott BM Jr, Filman DJ, Cheng N, Trus BL, Zuccola HJ, Racaniello VR, Hogle JM, Steven AC (2000b) Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc Natl Acad Sci USA 97:73–78

    Article  CAS  PubMed  Google Scholar 

  • Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW (1992) Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720

    Article  CAS  PubMed  Google Scholar 

  • Berka U, Khan A, Blaas D, Fuchs R (2009) Human rhinovirus type 2 uncoating at the plasma membrane is not affected by a pH gradient but is affected by the membrane potential. J Virol 83:3778–3787

    Article  CAS  PubMed  Google Scholar 

  • Berryman S, Clark S, Monaghan P, Jackson T (2005) Early events in integrin {alpha}v{beta}6-mediated cell entry of foot-and-mouth disease virus. J Virol 79:8519–8534

    Article  CAS  PubMed  Google Scholar 

  • Bishop NE (1998) Examination of potential inhibitors of hepatitis A virus uncoating. Intervirology 41:261–271

    Article  CAS  PubMed  Google Scholar 

  • Boonyakiat Y, Hughes PJ, Ghazi F, Stanway G (2001) Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol 75:10000–10004

    Article  CAS  PubMed  Google Scholar 

  • Brabec M, Baravalle G, Blaas D, Fuchs R (2003) Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. J Virol 77:5370–5377

    Article  CAS  PubMed  Google Scholar 

  • Brabec M, Schober D, Wagner E, Bayer N, Murphy RF, Blaas D, Fuchs R (2005) Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. J Virol 79:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Brabec M, Blaas D, Fuchs R (2006) Wortmannin delays transfer of human rhinovirus serotype 2 to late endocytic compartments. Biochem Biophys Res Commun 348:741–749

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM (2007) Imaging poliovirus entry in live cells. PLoS Biol 5:e183

    Article  PubMed  CAS  Google Scholar 

  • Broo K, Wei J, Marshall D, Brown F, Smith TJ, Johnson JE, Schneemann A, Siuzdak G (2001) Viral capsid mobility: a dynamic conduit for inactivation. Proc Natl Acad Sci USA 98:2274–2277

    Article  CAS  PubMed  Google Scholar 

  • Brown F, Cartwright B (1961) Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature 192:1163–1164

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM (2005a) The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 79:7745–7755

    Article  CAS  PubMed  Google Scholar 

  • Bubeck D, Filman DJ, Hogle JM (2005b) Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nat Struct Mol Biol 12:615–618

    Article  CAS  PubMed  Google Scholar 

  • Burroughs JN, Rowlands DJ, Sangar DV, Talbot P, Brown F (1971) Further evidence for multiple proteins in the foot-and-mouth disease virus particle. J Gen Virol 13:73–84

    Article  CAS  PubMed  Google Scholar 

  • Casasnovas JM, Springer TA (1994) Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 68:5882–5889

    CAS  PubMed  Google Scholar 

  • Casasnovas JM, Springer TA (1995) Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem 270:13216–13224

    Article  CAS  PubMed  Google Scholar 

  • Casasnovas JM, Stehle T, Liu JH, Wang JH, Springer TA (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc Natl Acad Sci USA 95:4134–4139

    Article  CAS  PubMed  Google Scholar 

  • Chen ZG, Stauffacher C, Li Y, Schmidt T, Bomu W, Kamer G, Shanks M, Lomonossoff G, Johnson JE (1989) Protein-RNA interactions in an icosahedral virus at 3.0 A resolution. Science 245:154–159

    Article  CAS  PubMed  Google Scholar 

  • Chen WJ, Goldstein JL, Brown MS (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265:3116–3123

    CAS  PubMed  Google Scholar 

  • Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486

    Article  CAS  PubMed  Google Scholar 

  • Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH (2005) Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 333:31–40

    Article  CAS  PubMed  Google Scholar 

  • Colonno RJ, Condra JH, Mizutani S, Callahan PL, Davies ME, Murcko MA (1988) Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci USA 85:5449–5453

    Article  CAS  PubMed  Google Scholar 

  • Cox S, Buontempo PJ, Wright-Minogue J, DeMartino JL, Skelton AM, Ferrari E, Schwartz J, Rozhon EJ, Linn CC, Girijavallabhan V, O'Connell JF (1996) Antipicornavirus activity of SCH 47802 and analogs: in vitro and in vivo studies. Antiviral Res 32:71–79

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Bergelson JM (2005) CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57:869–882

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Kim KS, Bergelson JM (2007a) Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. Embo J 26:4016–4028

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Shen L, Turner JR, Bergelson JM (2007b) Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe 2:181–192

    Article  CAS  PubMed  Google Scholar 

  • Crowell RL, Philipson L (1971) Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol 8:509–515

    CAS  PubMed  Google Scholar 

  • Curry S, Abrams CC, Fry E, Crowther JC, Belsham GJ, Stuart DI, King AM (1995) Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol 69:430–438

    CAS  PubMed  Google Scholar 

  • Curry S, Chow M, Hogle JM (1996) The poliovirus 135S particle is infectious. J Virol 70:7125–7131

    CAS  PubMed  Google Scholar 

  • Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Stuart D (1997) Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol 71:9743–9752

    CAS  PubMed  Google Scholar 

  • Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488

    Article  CAS  PubMed  Google Scholar 

  • Danthi P, Tosteson M, Li QH, Chow M (2003) Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol 77:5266–5274

    Article  CAS  PubMed  Google Scholar 

  • Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, Tuthill TJ (2008) Recombinant VP4 of human rhinovirus induces permeability in model membranes. J ViroL 82:4169–4174

    Google Scholar 

  • De Sena J, Mandel B (1977) Studies on the in vitro uncoating of poliovirus. II. Characteristics of the membrane-modified particle. Virology 78:554–566

    Article  PubMed  Google Scholar 

  • DeTulleo L, Kirchhausen T (1998) The clathrin endocytic pathway in viral infection. Embo J 17:4585–4593

    Article  CAS  PubMed  Google Scholar 

  • Diana GD, Pevear DC, Otto MJ, McKinlay MA, Rossmann MG, Smith T, Badger J (1989) Inhibitors of viral uncoating. Pharmacol Ther 42:289–305

    Article  CAS  PubMed  Google Scholar 

  • Dicara D, Burman A, Clark S, Berryman S, Howard MJ, Hart IR, Marshall JF, Jackson T (2008) Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin alphavbeta6: implications for infectiousness. J Virol 82:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Altendorf K (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200:1–8

    CAS  PubMed  Google Scholar 

  • Dubra MS, La Torre JL, Scodeller EA, Denoya CD, Vasquez C (1982) Cores in foot-and-mouth disease virus. Virology 116:349–353

    Article  CAS  PubMed  Google Scholar 

  • Duque H, LaRocco M, Golde WT, Baxt B (2004) Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins. J Virol 78:9773–9781

    Article  CAS  PubMed  Google Scholar 

  • Engle MJ, Goetz GS, Alpers DH (1998) Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J Cell Physiol 174:362–369

    Article  CAS  PubMed  Google Scholar 

  • Everaert L, Vrijsen R, Boeye A (1989) Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171:76–82

    Article  CAS  PubMed  Google Scholar 

  • Feigelstock D, Thompson P, Mattoo P, Kaplan GG (1998) Polymorphisms of the hepatitis A virus cellular receptor 1 in African green monkey kidney cells result in antigenic variants that do not react with protective monoclonal antibody 190/4. J Virol 72:6218–6222

    CAS  PubMed  Google Scholar 

  • Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. Embo J 8:1567–1579

    CAS  PubMed  Google Scholar 

  • Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT (2001) Simultaneous binding of PtdIns(4, 5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Fox MP, Otto MJ, McKinlay MA (1986) Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob Agents Chemother 30:110–116

    Article  CAS  PubMed  Google Scholar 

  • Freimuth P, Philipson L, Carson SD (2008) The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 323:67–87

    Article  CAS  PubMed  Google Scholar 

  • Fricks CE, Hogle JM (1990) Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64:1934–1945

    CAS  PubMed  Google Scholar 

  • Fricks CE, Icenogle JP, Hogle JM (1985) Trypsin sensitivity of the Sabin strain of type 1 poliovirus: cleavage sites in virions and related particles. J Virol 54:856–859

    CAS  PubMed  Google Scholar 

  • Fry EE, Knowles NJ, Newman JW, Wilsden G, Rao Z, King AM, Stuart DI (2003) Crystal structure of Swine vesicular disease virus and implications for host adaptation. J Virol 77:5475–5486

    Article  CAS  PubMed  Google Scholar 

  • Glickman JN, Conibear E, Pearse BM (1989) Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor. Embo J 8:1041–1047

    CAS  PubMed  Google Scholar 

  • Golden JS, Harrison SC (1982) Proteolytic dissection of turnip crinkle virus subunit in solution. Biochemistry 21:3862–3866

    Article  CAS  PubMed  Google Scholar 

  • Gomez Yafal A, Kaplan G, Racaniello VR, Hogle JM (1993) Characterization of poliovirus conformational alteration mediated by soluble cell receptors. Virology 197:501–505

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow IG, Powell RM, Ward T, Spiller OB, Almond JW, Evans DJ (2000) Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J Gen Virol 81:1393–1401

    CAS  PubMed  Google Scholar 

  • Goodfellow IG, Evans DJ, Blom AM, Kerrigan D, Miners JS, Morgan BP, Spiller OB (2005) Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J Virol 79:12016–12024

    Article  CAS  PubMed  Google Scholar 

  • Gould GW, Lippincott-Schwartz J (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 10:287–292

    Article  CAS  PubMed  Google Scholar 

  • Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM (1994) Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol 4:784–797

    Article  CAS  PubMed  Google Scholar 

  • Grassme H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262

    Article  CAS  PubMed  Google Scholar 

  • Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839–847

    Article  CAS  PubMed  Google Scholar 

  • Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A (1991) Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65:6015–6023

    CAS  PubMed  Google Scholar 

  • Gromeier M, Wetz K (1990) Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment. J Virol 64:3590–3597

    CAS  PubMed  Google Scholar 

  • Gromeier M, Solecki D, Patel DD, Wimmer E (2000) Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273:248–257

    Article  CAS  PubMed  Google Scholar 

  • Grunert HP, Wolf KU, Langner KD, Sawitzky D, Habermehl KO, Zeichhardt H (1997) Internalization of human rhinovirus 14 into HeLa and ICAM-1-transfected BHK cells. Med Microbiol Immunol 186:1–9

    Article  CAS  PubMed  Google Scholar 

  • Guttman N, Baltimore D (1977) Morphogenesis of poliovirus. IV. existence of particles sedimenting at 150S and having the properties of provirion. J Virol 23:363–367

    CAS  PubMed  Google Scholar 

  • Guy M, Chilmonczyk S, Cruciere C, Eloit M, Bakkali-Kassimi L (2009) Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids. J Gen Virol 90:187–196

    Article  CAS  PubMed  Google Scholar 

  • Hadfield AT, Lee W, Zhao R, Oliveira MA, Minor I, Rueckert RR, Rossmann MG (1997) The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure 5:427–441

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH, Sandvig K, van Deurs B (1993) Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol 121:61–72

    Article  CAS  PubMed  Google Scholar 

  • Hao W, Tan Z, Prasad K, Reddy KK, Chen J, Prestwich GD, Falck JR, Shears SB, Lafer EM (1997) Regulation of AP-3 function by inositides. Identification of phosphatidylinositol 3, 4, 5-trisphosphate as a potent ligand. J Biol Chem 272:6393–6398

    Article  CAS  PubMed  Google Scholar 

  • Heikkila O, Susi P, Stanway G, Hyypia T (2009) Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9. J Gen Virol 90:197–204

    Article  CAS  PubMed  Google Scholar 

  • Hendry E, Hatanaka H, Fry E, Smyth M, Tate J, Stanway G, Santti J, Maaronen M, Hyypia T, Stuart D (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:1527–1538

    Article  CAS  PubMed  Google Scholar 

  • Hertzler S, Luo M, Lipton HL (2000) Mutation of predicted virion pit residues alters binding of Theiler's murine encephalomyelitis virus to BHK-21 cells. J Virol 74:1994–2004

    Article  CAS  PubMed  Google Scholar 

  • Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400

    Article  CAS  PubMed  Google Scholar 

  • Hewat EA, Blaas D (2004) Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J Virol 78:2935–2942

    Article  CAS  PubMed  Google Scholar 

  • Hewat EA, Neumann E, Conway JF, Moser R, Ronacher B, Marlovits TC, Blaas D (2000) The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. Embo J 19:6317–6325

    Article  CAS  PubMed  Google Scholar 

  • Hewat EA, Neumann E, Blaas D (2002) The concerted conformational changes during human rhinovirus 2 uncoating. Mol Cell 10:317–326

    Article  CAS  PubMed  Google Scholar 

  • Hindiyeh M, Li QH, Basavappa R, Hogle JM, Chow M (1999) Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J Virol 73:9072–9079

    CAS  PubMed  Google Scholar 

  • Hoey EM, Martin SJ (1974) A possible precursor containing RNA of a bovine enterovirus: the provirion 11. J Gen Virol 24:515–524

    Article  CAS  PubMed  Google Scholar 

  • Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 91:1839–1842

    Article  CAS  PubMed  Google Scholar 

  • Hoover-Litty H, Greve JM (1993) Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J Virol 67:390–397

    CAS  PubMed  Google Scholar 

  • Huang Y, Hogle JM, Chow M (2000) Is the 135S poliovirus particle an intermediate during cell entry? J Virol 74:8757–8761

    Article  CAS  PubMed  Google Scholar 

  • Huber SA (1994) VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol 68:3453–3458

    CAS  PubMed  Google Scholar 

  • Hughes PJ, Horsnell C, Hyypia T, Stanway G (1995) The coxsackievirus A9 RGD motif is not essential for virus viability. J Virol 69:8035–8040

    CAS  PubMed  Google Scholar 

  • Jackson T, Ellard FM, Ghazaleh RA, Brookes SM, Blakemore WE, Corteyn AH, Stuart DI, Newman JW, King AM (1996) Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70:5282–5287

    CAS  PubMed  Google Scholar 

  • Jackson T, Sheppard D, Denyer M, Blakemore W, King AM (2000) The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956

    Article  CAS  PubMed  Google Scholar 

  • Jackson T, Mould AP, Sheppard D, King AM (2002) Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol 76:935–941

    Article  CAS  PubMed  Google Scholar 

  • Jackson T, Clark S, Berryman S, Burman A, Cambier S, Mu D, Nishimura S, King AM (2004) Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J Virol 78:4533–4540

    Article  CAS  PubMed  Google Scholar 

  • Johansson S, Niklasson B, Maizel J, Gorbalenya AE, Lindberg AM (2002) Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of the Picornaviridae with a cluster of two unrelated 2A proteins. J Virol 76:8920–8930

    Article  CAS  PubMed  Google Scholar 

  • Johns HL, Berryman S, Monaghan P, Belsham GJ, Jackson T (2009) A dominant negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus; implications for virus entry. J Virol 83(12):6247–6256

    Article  CAS  PubMed  Google Scholar 

  • Joki-Korpela P, Marjomaki V, Krogerus C, Heino J, Hyypia T (2001) Entry of human parechovirus 1. J Virol 75:1958–1967

    Article  CAS  PubMed  Google Scholar 

  • Joklik WK, Darnell JE Jr (1961) The adsorption and early fate of purified poliovirus in HeLa cells. Virology 13:439–447

    Article  CAS  PubMed  Google Scholar 

  • Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM (1996) Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. Embo J 15:4282–4296

    CAS  PubMed  Google Scholar 

  • Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpaa P, Liberali P, Renkema GH, Hyypia T, Heino J, Marjomaki V (2008) A Raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 19:2857–2869

    Article  CAS  PubMed  Google Scholar 

  • Katpally U, Smith TJ (2007) Pocket factors are unlikely to play a major role in the life cycle of human rhinovirus. J Virol 81:6307–6315

    Article  CAS  PubMed  Google Scholar 

  • Katpally U, Fu TM, Freed DC, Casimiro DR, Smith TJ (2009) Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization. J Virol 83:7040–7048

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Smith TJ, Chapman MS, Rossmann MC, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA (1989) Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210:91–111

    Article  CAS  PubMed  Google Scholar 

  • Konecsni T, Kremser L, Snyers L, Rankl C, Kilar F, Kenndler E, Blaas D (2004) Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. FEBS Lett 568:99–104

    Article  CAS  PubMed  Google Scholar 

  • Korant BD, Lonberg-Holm K, Noble J, Stasny JT (1972) Naturally occurring and artificially produced components of three rhinoviruses. Virology 48:71–86

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Kruse KM, Witz J, Chauvin C, Jacrot B, Tardieu A (1982) Divalent ion-dependent reversible swelling of tomato bushy stunt virus and organization of the expanded virion. J Mol Biol 162:393–414

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Wang X, Song L, North M, Wiehler S, Proud D, Chow CW (2008) Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol 180:870–880

    CAS  PubMed  Google Scholar 

  • Lea S (2002) Interactions of CD55 with non-complement ligands. Biochem Soc Trans 30:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122

    CAS  PubMed  Google Scholar 

  • Levy HC, Bostina M, Filman DJ, Hogle JM (2010) Catching a virus in the act of RNA-release: a novel poliovirus uncoating intermediate characterized by cryoelectron microscopy. J Virol (Epub ahead of print)

    Google Scholar 

  • Lewis JK, Bothner B, Smith TJ, Siuzdak G (1998) Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci USA 95:6774–6778

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yafal AG, Lee YM, Hogle J, Chow M (1994) Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68:3965–3970

    CAS  PubMed  Google Scholar 

  • Li F, Browning GF, Studdert MJ, Crabb BS (1996) Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proc Natl Acad Sci USA 93:990–995

    Article  CAS  PubMed  Google Scholar 

  • Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Bockmann RA, Corda D, Colanzi A, Marjomaki V, Luini A (2008) The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. Embo J 27:970–981

    Article  CAS  PubMed  Google Scholar 

  • Lindahl G, Sjobring U, Johnsson E (2000) Human complement regulators: a major target for pathogenic microorganisms. Curr Opin Immunol 12:44–51

    Article  CAS  PubMed  Google Scholar 

  • Lipton HL, Kumar AS, Hertzler S, Reddi HV (2006) Differential usage of carbohydrate co-receptors influences cellular tropism of Theiler's murine encephalomyelitis virus infection of the central nervous system. Glycoconj J 23:39–49

    Article  CAS  PubMed  Google Scholar 

  • Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N et al (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568

    Article  CAS  PubMed  Google Scholar 

  • Lonberg-Holm K, Korant BD (1972) Early interaction of rhinoviruses with host cells. J Virol 9:29–40

    CAS  PubMed  Google Scholar 

  • Lonberg-Holm K, Yin FH (1973) Antigenic determinants of infective and inactivated human rhinovirus type 2. J Virol 12:114–123

    CAS  PubMed  Google Scholar 

  • Lonberg-Holm K, Gosser LB, Kauer JC (1975) Early alteration of poliovirus in infected cells and its specific inhibition. J Gen Virol 27:329–342

    Article  CAS  PubMed  Google Scholar 

  • Lonberg-Holm K, Gosser LB, Shimshick EJ (1976) Interaction of liposomes with subviral particles of poliovirus type 2 and rhinovirus type 2. J Virol 19:746–749

    CAS  PubMed  Google Scholar 

  • Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191

    Article  CAS  PubMed  Google Scholar 

  • Mak TW, O'Callaghan DJ, Colter JS (1970) Studies of the pH inactivation of three variants of Mengo encephalomyelitis virus. Virology 40:565–571

    Article  CAS  PubMed  Google Scholar 

  • Marjomaki V, Pietiainen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypia T, Heino J (2002) Internalization of echovirus 1 in caveolae. J Virol 76:1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Marlovits TC, Abrahamsberg C, Blaas D (1998a) Soluble LDL minireceptors. Minimal structure requirements for recognition of minor group human rhinovirus. J Biol Chem 273:33835–33840

    Article  CAS  PubMed  Google Scholar 

  • Marlovits TC, Abrahamsberg C, Blaas D (1998b) Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J Virol 72:10246–10250

    CAS  PubMed  Google Scholar 

  • Marlovits TC, Zechmeister T, Schwihla H, Ronacher B, Blaas D (1998c) Recombinant soluble low-density lipoprotein receptor fragment inhibits common cold infection. J Mol Recognit 11:49–51

    Article  CAS  PubMed  Google Scholar 

  • Martin-Acebes MA, Gonzalez-Magaldi M, Sandvig K, Sobrino F, Armas-Portela R (2007) Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology 369:105–118

    Article  CAS  PubMed  Google Scholar 

  • Martin-Acebes MA, Gonzalez-Magaldi M, Vazquez-Calvo A, Armas-Portela R, Sobrino F (2009) Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 83(9):4216–4226

    Article  CAS  PubMed  Google Scholar 

  • Martinez MA, Verdaguer N, Mateu MG, Domingo E (1997) Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci USA 94:6798–6802

    Article  CAS  PubMed  Google Scholar 

  • Mason PW, Baxt B, Brown F, Harber J, Murdin A, Wimmer E (1993) Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192:568–577

    Article  CAS  PubMed  Google Scholar 

  • McDermott BM Jr, Rux AH, Eisenberg RJ, Cohen GH, Racaniello VR (2000) Two distinct binding affinities of poliovirus for its cellular receptor. J Biol Chem 275:23089–23096

    Article  CAS  PubMed  Google Scholar 

  • McIntire JJ, Umetsu DT, DeKruyff RH (2004) TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 25:335–348

    Article  PubMed  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  CAS  PubMed  Google Scholar 

  • Monaghan P, Gold S, Simpson J, Zhang Z, Weinreb PH, Violette SM, Alexandersen S, Jackson T (2005) The alpha(v)beta6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 86:2769–2780

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn CL, Wimmer E, Racaniello VR (1988) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865

    Google Scholar 

  • Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, Koval M (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Nathanson N (2008) The pathogenesis of poliomyelitis: what we don't know. Adv Virus Res 71:1–50

    Article  CAS  PubMed  Google Scholar 

  • Nelsen-Salz B, Eggers HJ, Zimmermann H (1999) Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol 80(Pt 9):2311–2313

    CAS  PubMed  Google Scholar 

  • Neubauer C, Frasel L, Kuechler E, Blaas D (1987) Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158:255–258

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H (2009) Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15:794–797

    Article  CAS  PubMed  Google Scholar 

  • Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C, Mrsny RJ (2000a) The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 275:29816–29822

    Article  CAS  PubMed  Google Scholar 

  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL (2000b) Tight junctions are membrane microdomains. J Cell Sci 113(Pt 10):1771–1781

    CAS  PubMed  Google Scholar 

  • O'Donnell V, LaRocco M, Duque H, Baxt B (2005) Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol 79:8506–8518

    Article  PubMed  CAS  Google Scholar 

  • O'Donnell V, Larocco M, Baxt B (2008) Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol 82:9075–9085

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MA, Zhao R, Lee WM, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA et al (1993) The structure of human rhinovirus 16. Structure 1:51–68

    Article  CAS  PubMed  Google Scholar 

  • Olson NH, Kolatkar PR, Oliveira MA, Cheng RH, Greve JM, McClelland A, Baker TS, Rossmann MG (1993) Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA 90:507–511

    Article  CAS  PubMed  Google Scholar 

  • Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59

    Article  CAS  PubMed  Google Scholar 

  • Parton RG (2004) Caveolae meet endosomes: a stable relationship? Dev Cell 7:458–460

    Article  CAS  PubMed  Google Scholar 

  • Patel KP, Bergelson JM (2009) Receptors identified for hand, foot and mouth virus. Nat Med 15:728–729

    Article  CAS  PubMed  Google Scholar 

  • Pearse BM (1988) Receptors compete for adaptors found in plasma membrane coated pits. Embo J 7:3331–3336

    CAS  PubMed  Google Scholar 

  • Pelkmans L, Helenius A (2003) Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86

    Article  CAS  PubMed  Google Scholar 

  • Perez L, Carrasco L (1993) Entry of poliovirus into cells does not require a low-pH step. J Virol 67:4543–4548

    CAS  PubMed  Google Scholar 

  • Pevear DC, Fancher MJ, Felock PJ, Rossmann MG, Miller MS, Diana G, Treasurywala AM, McKinlay MA, Dutko FJ (1989) Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J Virol 63:2002–2007

    CAS  PubMed  Google Scholar 

  • Phelps DK, Post CB (1999) Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Sci 8:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Pietiainen V, Marjomaki V, Upla P, Pelkmans L, Helenius A, Hyypia T (2004) Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell 15:4911–4925

    Article  PubMed  CAS  Google Scholar 

  • Powell RM, Schmitt V, Ward T, Goodfellow I, Evans DJ, Almond JW (1998) Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J Gen Virol 79(Pt 7):1707–1713

    CAS  PubMed  Google Scholar 

  • Powell RM, Ward T, Goodfellow I, Almond JW, Evans DJ (1999) Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. J Gen Virol 80(Pt 12):3145–3152

    CAS  PubMed  Google Scholar 

  • Prchla E, Kuechler E, Blaas D, Fuchs R (1994) Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 68:3713–3723

    CAS  PubMed  Google Scholar 

  • Prchla E, Plank C, Wagner E, Blaas D, Fuchs R (1995) Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J Cell Biol 131:111–123

    Article  CAS  PubMed  Google Scholar 

  • Querol-Audi J, Konecsni T, Pous J, Carugo O, Fita I, Verdaguer N, Blaas D (2009) Minor group human rhinovirus-receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett 583:235–240

    Article  CAS  PubMed  Google Scholar 

  • Racaniello VR (2007) Picornaviridae: The viruses and their replication. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (5th ed) Fields Virology. Lippincott Williams & Wilkins, USA, pp 795–838

    Google Scholar 

  • Rankl C, Kienberger F, Wildling L, Wruss J, Gruber HJ, Blaas D, Hinterdorfer P (2008) Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci USA 105:17778–17783

    Article  PubMed  Google Scholar 

  • Reischl A, Reithmayer M, Winsauer G, Moser R, Gosler I, Blaas D (2001) Viral evolution toward change in receptor usage: adaptation of a major group human rhinovirus to grow in ICAM-1-negative cells. J Virol 75:9312–9319

    Article  CAS  PubMed  Google Scholar 

  • Reisdorph N, Thomas JJ, Katpally U, Chase E, Harris K, Siuzdak G, Smith TJ (2003) Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314:34–44

    Article  CAS  PubMed  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  CAS  PubMed  Google Scholar 

  • Robinson IK, Harrison SC (1982) Structure of the expanded state of Tomato Bushy Stunt Virus. Nature 297:563–568

    Google Scholar 

  • Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    CAS  PubMed  Google Scholar 

  • Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T (1994) Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357–365

    Article  CAS  PubMed  Google Scholar 

  • Rowlands DJ, Sangar DV, Brown F (1975) A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus. J Gen Virol 26:227–238

    Article  CAS  PubMed  Google Scholar 

  • Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW (1997) Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71:5115–5123

    CAS  PubMed  Google Scholar 

  • Schober D, Kronenberger P, Prchla E, Blaas D, Fuchs R (1998) Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J Virol 72:1354–1364

    CAS  PubMed  Google Scholar 

  • Shafren DR, Dorahy DJ, Greive SJ, Burns GF, Barry RD (1997a) Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J Virol 71:785–789

    CAS  PubMed  Google Scholar 

  • Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD (1997b) Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71:4736–4743

    CAS  PubMed  Google Scholar 

  • Shafren DR, Williams DT, Barry RD (1997c) A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol 71:9844–9848

    CAS  PubMed  Google Scholar 

  • Silberstein E, Dveksler G, Kaplan GG (2001) Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J Virol 75:717–725

    Article  CAS  PubMed  Google Scholar 

  • Silberstein E, Xing L, van de Beek W, Lu J, Cheng H, Kaplan GG (2003) Alteration of hepatitis A virus (HAV) particles by a soluble form of HAV cellular receptor 1 containing the immunoglobin-and mucin-like regions. J Virol 77:8765–8774

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Smyth M, Tate J, Hoey E, Lyons C, Martin S, Stuart D (1995) Implications for viral uncoating from the structure of bovine enterovirus. Nat Struct Biol 2:224–231

    Article  CAS  PubMed  Google Scholar 

  • Snyers L, Zwickl H, Blaas D (2003) Human rhinovirus type 2 is internalized by clathrin-mediated endocytosis. J Virol 77:5360–5369

    Article  CAS  PubMed  Google Scholar 

  • Speelman B, Brooks BR, Post CB (2001) Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys J 80:121–129

    Article  CAS  PubMed  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  CAS  PubMed  Google Scholar 

  • Stanway G, Joki-Korpela P, Hyypia T (2000) Human parechoviruses–biology and clinical significance. Rev Med Virol 10:57–69

    Article  CAS  PubMed  Google Scholar 

  • Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RA, Huang JA, Studdert MJ, Hartley CA (2004) Sialic acid acts as a receptor for equine rhinitis A virus binding and infection. J Gen Virol 85:2535–2543

    Article  CAS  PubMed  Google Scholar 

  • Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 96:6775–6780

    Article  CAS  PubMed  Google Scholar 

  • Superti F, Seganti L, Orsi N, Divizia M, Gabrieli R, Pana A (1987) The effect of lipophilic amines on the growth of hepatitis A virus in Frp/3 cells. Arch Virol 96:289–296

    Article  CAS  PubMed  Google Scholar 

  • Superti F, Seganti L, Orsi N, Divizia M, Gabrieli R, Pana A (1989) Effect of cellular function inhibitors on the infection of Frp/3 cells by hepatitis A virus. Med Microbiol Immunol 178:29–36

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9:603–615

    Article  CAS  PubMed  Google Scholar 

  • Tami C, Silberstein E, Manangeeswaran M, Freeman GJ, Umetsu SE, DeKruyff RH, Umetsu DT, Kaplan GG (2007) Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J Virol 81:3437–3446

    Article  CAS  PubMed  Google Scholar 

  • Tartakoff AM (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32:1026–1028

    Article  CAS  PubMed  Google Scholar 

  • Tavakkol A, Burness AT (1990) Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry 29:10684–10690

    Article  CAS  PubMed  Google Scholar 

  • Tesar M, Jia XY, Summers DF, Ehrenfeld E (1993) Analysis of a potential myristoylation site in hepatitis A virus capsid protein VP4. Virology 194:616–626

    Article  CAS  PubMed  Google Scholar 

  • Thompson P, Lu J, Kaplan GG (1998) The Cys-rich region of hepatitis A virus cellular receptor 1 is required for binding of hepatitis A virus and protective monoclonal antibody 190/4. J Virol 72:3751–3761

    CAS  PubMed  Google Scholar 

  • Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci USA 86:4907–4911

    Article  CAS  PubMed  Google Scholar 

  • Tosteson MT, Chow M (1997) Characterization of the ion channels formed by poliovirus in planar lipid membranes. J Virol 71:507–511

    CAS  PubMed  Google Scholar 

  • Tosteson MT, Wang H, Naumov A, Chow M (2004) Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. J Gen Virol 85:1581–1589

    Article  CAS  PubMed  Google Scholar 

  • Toth KS, Zhang CX, Lipton HL, Luo M (1993) Crystallization and preliminary X-ray diffraction studies of Theiler's virus (GDVII strain). J Mol Biol 231:1126–1129

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Triantafilou K, Wilson KM, Takada Y, Fernandez N, Stanway G (1999) Involvement of beta2-microglobulin and integrin alphavbeta3 molecules in the coxsackievirus A9 infectious cycle. J Gen Virol 80(Pt 10):2591–2600

    CAS  PubMed  Google Scholar 

  • Triantafilou K, Triantafilou M, Takada Y, Fernandez N (2000) Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbeta1 as receptors. J Virol 74:5856–5862

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou K, Takada Y, Triantafilou M (2001) Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 21:311–322

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  CAS  PubMed  Google Scholar 

  • Tsang SK, Danthi P, Chow M, Hogle JM (2000) Stabilization of poliovirus by capsid-binding antiviral drugs is due to entropic effects. J Mol Biol 296:335–340

    Article  CAS  PubMed  Google Scholar 

  • Tsang SK, Cheh J, Isaacs L, Joseph-McCarthy D, Choi SK, Pevear DC, Whitesides GM, Hogle JM (2001) A structurally biased combinatorial approach for discovering new anti-picornaviral compounds. Chem Biol 8:33–45

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 21:148–154

    Article  CAS  PubMed  Google Scholar 

  • Tuthill TJ, Papadopoulos NG, Jourdan P, Challinor LJ, Sharp NA, Plumpton C, Shah K, Barnard S, Dash L, Burnet J, Killington RA, Rowlands DJ, Clarke NJ, Blair ED, Johnston SL (2003) Mouse respiratory epithelial cells support efficient replication of human rhinovirus. J Gen Virol 84:2829–2836

    Article  CAS  PubMed  Google Scholar 

  • Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM (2006) Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J Virol 80:172–180

    Article  CAS  PubMed  Google Scholar 

  • Tuthill TJ, Rowlands DJ, Killington RA (2007) Future Virol 2(4):343–351

    Article  CAS  Google Scholar 

  • Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, Stuart DI, Fry EE (2009) Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog 5:e1000620

    Article  PubMed  CAS  Google Scholar 

  • Ulanova M, Puttagunta L, Marcet-Palacios M, Duszyk M, Steinhoff U, Duta F, Kim MK, Indik ZK, Schreiber AD, Befus AD (2005) Syk tyrosine kinase participates in beta1-integrin signaling and inflammatory responses in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 288:L497–L507

    Article  CAS  PubMed  Google Scholar 

  • Upla P, Marjomaki V, Kankaanpaa P, Ivaska J, Hyypia T, Van Der Goot FG, Heino J (2004) Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol Biol Cell 15:625–636

    Article  CAS  PubMed  Google Scholar 

  • van Vlijmen HW, Curry S, Schaefer M, Karplus M (1998) Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol 275:295–308

    Article  PubMed  Google Scholar 

  • Vaughan JC, Brandenburg B, Hogle JM, Zhuang X (2009) Rapid actin-dependent viral motility in live cells. Biophys J 97:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194

    Article  CAS  PubMed  Google Scholar 

  • Vlasak M, Roivainen M, Reithmayer M, Goesler I, Laine P, Snyers L, Hovi T, Blaas D (2005) The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding. J Virol 79:7389–7395

    Article  CAS  PubMed  Google Scholar 

  • Wachsman MB, Castilla V, Coto CE (1998) Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves. Arch Virol 143:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lau C, Wiehler S, Pow A, Mazzulli T, Gutierrez C, Proud D, Chow CW (2006) Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 177:6859–6870

    CAS  PubMed  Google Scholar 

  • Ward T, Powell RM, Pipkin PA, Evans DJ, Minor PD, Almond JW (1998) Role for beta2-microglobulin in echovirus infection of rhabdomyosarcoma cells. J Virol 72:5360–5365

    CAS  PubMed  Google Scholar 

  • Warner S, Hartley CA, Stevenson RA, Ficorilli N, Varrasso A, Studdert MJ, Crabb BS (2001) Evidence that Equine rhinitis A virus VP1 is a target of neutralizing antibodies and participates directly in receptor binding. J Virol 75:9274–9281

    Article  CAS  PubMed  Google Scholar 

  • Wetz K, Kucinski T (1991) Influence of different ionic and pH environments on structural alterations of poliovirus and their possible relation to virus uncoating. J Gen Virol 72(Pt 10):2541–2544

    Article  CAS  PubMed  Google Scholar 

  • Widell A, Hansson BG, Oberg B, Nordenfelt E (1986) Influence of twenty potentially antiviral substances on in vitro multiplication of hepatitis A virus. Antiviral Res 6:103–112

    Article  CAS  PubMed  Google Scholar 

  • Williams CH, Kajander T, Hyypia T, Jackson T, Sheppard D, Stanway G (2004) Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J Virol 78:6967–6973

    Article  CAS  PubMed  Google Scholar 

  • Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Wruss J, Runzler D, Steiger C, Chiba P, Kohler G, Blaas D (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46:6331–6339

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Huhtala M, Pietiainen V, Kapyla J, Vuorinen K, Marjomaki V, Heino J, Johnson MS, Hyypia T, Cheng RH (2004) Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1. J Biol Chem 279:11632–11638

    Article  CAS  PubMed  Google Scholar 

  • Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15:798–801

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Ali N, Bembenek ME, Shears SB, Lafer EM (1995) Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem 270:1564–1568

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Luo Y, Wu Y, Tsao J, Luo M (2000) Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J Virol 74:1477–1485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.T, E.G, and D.R are supported by the Biology and Biotechnology Research Council, UK and the Medical Research Council, UK. J.H. is supported by NIH/NIAID and NIH/NIGMS. We thank Hazel Levy for the images depicted in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rowlands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuthill, T.J., Groppelli, E., Hogle, J.M., Rowlands, D.J. (2010). Picornaviruses. In: Johnson, J. (eds) Cell Entry by Non-Enveloped Viruses. Current Topics in Microbiology and Immunology, vol 343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_37

Download citation

Publish with us

Policies and ethics