Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin

deep learning

  • Open Access
    Clinical Applications of Artificial Intelligence in Uveal Melanoma
    WILLIAM F. CHADWICK, SANJAY GANESH, ALBERT K. DADZIE, BEHROUZ EBRAHIMI, MOJTABA RAHIMI, TAEYOON SON, REEM ALAHMADI, XINCHENG YAO and MICHAEL J. HEIFERMAN
    Anticancer Research November 2025, 45 (11) 4669-4681; DOI: https://doi.org/10.21873/anticanres.17817
  • You have access
    Deep Learning-based Image Cytometry Using a Bit-pattern Kernel-filtering Algorithm to Avoid Multi-counted Cell Determination
    TOMOKI ABE, KIMIHIRO YAMASHITA, TORU NAGASAKA, MITSUGU FUJITA, KYOUSUKE AGAWA, MASAYUKI ANDO, TOMOSUKE MUKOYAMA, KOTA YAMADA, SOUICHIRO MIYAKE, MASAFUMI SAITO, RYUICHIRO SAWADA, HIROSHI HASEGAWA, TAKERU MATSUDA, TAKASHI KATO, HITOSHI HARADA, NAOKI URAKAWA, HIRONOBU GOTO, SHINGO KANAJI, HIROAKI YANAGIMOTO, TARO OSHIKIRI, TETSUO AJIKI, TAKUMI FUKUMOTO and YOSHIHIRO KAKEJI
    Anticancer Research August 2023, 43 (8) 3755-3761; DOI: https://doi.org/10.21873/anticanres.16560
  • You have access
    Preliminary Results of Deep Learning Approach for Preoperative Diagnosis of Ovarian Cancer Based on Pelvic MRI Scans
    MUNETOSHI AKAZAWA and KAZUNORI HASHIMOTO
    Anticancer Research August 2023, 43 (8) 3817-3821; DOI: https://doi.org/10.21873/anticanres.16568
  • Open Access
    Two-Phase Deep Learning Algorithm for Detection and Differentiation of Ewing Sarcoma and Acute Osteomyelitis in Paediatric Radiographs
    SARAH CONSALVO, FLORIAN HINTERWIMMER, JAN NEUMANN, MARC STEINBORN, MAYA SALZMANN, FRITZ SEIDL, ULRICH LENZE, CAROLIN KNEBEL, DANIEL RUECKERT and RAINER H.H. BURGKART
    Anticancer Research September 2022, 42 (9) 4371-4380; DOI: https://doi.org/10.21873/anticanres.15937
  • You have access
    Radiogenomic and Deep Learning Network Approaches to Predict KRAS Mutation from Radiotherapy Plan CT
    BUM-SUP JANG, CHANGHOON SONG, SUNG-BUM KANG and JAE-SUNG KIM
    Anticancer Research August 2021, 41 (8) 3969-3976; DOI: https://doi.org/10.21873/anticanres.15193
  • You have access
    Artificial Intelligence in Ovarian Cancer Diagnosis
    MUNETOSHI AKAZAWA and KAZUNORI HASHIMOTO
    Anticancer Research August 2020, 40 (8) 4795-4800; DOI: https://doi.org/10.21873/anticanres.14482
Anticancer Research

© 2025 Anticancer Research

Powered by HighWire