TY - JOUR T1 - Synthesis of <sup>68</sup>Ga-Labeled Biopolymer-based Nanoparticle Imaging Agents for Positron-emission Tomography JF - Anticancer Research JO - Anticancer Res SP - 2415 LP - 2427 DO - 10.21873/anticanres.13359 VL - 39 IS - 5 AU - ZOLTÁN KÖRHEGYI AU - DÁVID RÓZSA AU - ISTVÁN HAJDU AU - MAGDOLNA BODNÁR AU - ISTVÁN KERTÉSZ AU - KRISZTINA KEREKES AU - SÁNDOR KUN AU - JÓZSEF KOLLÁR AU - JÓZSEF VARGA AU - ILDIKÓ GARAI AU - GYÖRGY TRENCSÉNYI AU - JÁNOS BORBÉLY Y1 - 2019/05/01 UR - http://ar.iiarjournals.org/content/39/5/2415.abstract N2 - Aim: The purpose of this study was to develop a folate receptor-targeted 68Ga-labeled agent for the detection of cancer cells in mouse models of ovarian cancer by dual positron-emission tomography (PET) and magnetic resonance imaging (MRI). Moreover, we aimed to develop a controlled biopolymer-based chemistry that enables linking metal-binding (here Ga-68) chelators. Materials and Methods: The nanoparticle (NP) agent was created by self-assembling of folic acid-modified polyglutamic acid and chelator-modified chitosan followed by radiolabeling with 68Ga (III) ions (68Ga-NODAGA-FA). The structure of modified biopolymers was characterized by spectroscopy. Particle size and mobility were determined. Results: Significant selective binding of NPs was established in vitro using folate receptor-positive KB and - negative MDA-MB-231 cell lines. In vivo tumor uptake of folate-targeted 68Ga3+-radiolabeled NPs was tested using subcutaneous tumor-bearing CB17 SCID mice models. PET/MR dual modalities showed high tumor uptake with 6.5 tumor-to-muscle ratio and NP localization. Conclusion: In vivo results supporting the preliminary in vitro tests demonstrated considerably higher 68Ga-NODAGA-FA nanoparticle accumulation in KB tumors than in MDA-MB-231 tumors, thereby confirming the folate receptor-mediated uptake of this novel potential PET imaging agent. ER -