TY - JOUR T1 - Histone-modifier Gene Expression Profiles Are Associated with Pathological and Clinical Outcomes in Human Breast Cancer JF - Anticancer Research JO - Anticancer Res SP - 4115 LP - 4125 VL - 31 IS - 12 AU - NEILL PATANI AU - WEN G. JIANG AU - ROBERT F. NEWBOLD AU - KEFAH MOKBEL Y1 - 2011/12/01 UR - http://ar.iiarjournals.org/content/31/12/4115.abstract N2 - Background: Epigenetic regulation of gene expression is under normal circumstances tightly controlled by the specific methylation of cytosine residues in CpG dinucleotides and coordinated by adjustments in the histone-dependent configuration of chromatin. Following our original report, providing the first description of potential tumor suppressor function associated with the histone methyltransferase SET domain containing 2 (SETD2) in breast cancer, the objective of this study was to determine the expression profiles of 16 further histone-modifier genes in a well annotated cohort of patients with primary operable breast cancer. Materials and Methods: Breast cancer tissues (n=127) and normal tissues (n=33) underwent RNA extraction and reverse transcription, and histone-modifier gene transcript levels were determined using real-time quantitative PCR. The histone-modifier genes included: histone acetyltransferases (cAMP response element-binding protein-binding protein (CREBBP)); class I (histone deacetylase 1 (HDAC1) and histone deacetylase 2 (HDAC2)), II (histone deacetylase 5 (HDAC5)) and III (sirtuin 1 (SIRT1)) histone deacetylases; and histone methyltransferases (SET domain containing suppressor of variegation 3-9 homolog 1 (SUV39H1) and suppressor of variegation 3-9 homolog 2 (SUV39H2)) amongst others. Expression levels were analysed against tumor size, grade, nodal involvement, histological subtype, receptor status, TNM stage, Nottingham Prognostic Index, and disease-free and overall survival over a 10-year follow-up period. Results: Expression of histone-modifier genes in breast cancer differed significantly from those in normal tissue (HDAC5, HDAC1, lysine (K)-specific demethylase 4A (KDM4A) and lysine (K)-specific demethylase 6A (KDM6A)). Differences in expression profiles were also found to exist between individual breast tumors and, in some cases, were significantly associated with conventional pathological parameters and prognostic indices: tumor grade (K (lysine) acetyltransferase 5 (KAT5), HDAC1, KDM4A, SUV39H1 and KDM6A)); TNM stage (SUV39H1, K (lysine) acetyltransferase 2B (KAT2B), lysine (K)-specific demethylase 1A (KDM1A), KDM4A, lysine (K)-specific demethylase 5C (KDM5C), K (lysine) acetyltransferase 8 (KAT8), HDAC5 and KAT5)); Nottingham Prognostic Index (KDM5C, myeloid/lymphoid or mixed-lineage leukemia (MLL), KAT8 and SET and MYND domain containing 3 (SMYD3)); receptor status (KAT5, SMYD3 and KDM1A); histological type (KAT5, KDM5C, KAT8, KDM4A and MLL); disease-free survival (SUV39H1, SMYD3, HDAC5, KDM6A, HDAC1, KDM1A, KDM4A, KAT8, KDM5C, KAT5 and MLL) and overall survival (KAT8). Significant correlations were identified between the differential expression profiles of particular histone-modifying genes. Conclusion: Expression levels of histone-modifier genes in breast cancer differ significantly from normal tissue. Differences in expression profiles exist between breast tumors and are significantly associated with conventional pathological parameters and clinical outcomes. Further study is warranted to determine the consequences of altered expression for each specific histone-modifier gene and the biological and clinical implications of combinatorial variations in expression profiles. Histone-modifier enzymes offer utility as biomarkers and potential for targeted therapeutic strategies. ER -