TY - JOUR T1 - Evaluation of Liposomal Curcumin Cytochrome P450 Metabolism JF - Anticancer Research JO - Anticancer Res SP - 811 LP - 814 VL - 30 IS - 3 AU - CLAIRE M. MACH AU - JING HONG CHEN AU - SCOTT A. MOSLEY AU - RAZELLE KURZROCK AU - JUDITH A. SMITH Y1 - 2010/03/01 UR - http://ar.iiarjournals.org/content/30/3/811.abstract N2 - Background: Curcumin (diferuloylmethane) is a commonly used spice and nutritional supplement that has demonstrated potential anti-tumor and anti-inflammatory activity. There is limited information regarding curcumin metabolism and the potential for drug-drug interactions. The objective of this study was to characterize the hepatic metabolism of synthetic curcumin used in the liposomal curcumin formulation. Materials and Methods: High-throughput cytochrome P450 (CYP450) metabolism inhibition assays were conducted in vitro evaluating CYP450 3A4, 2C8, 2C9, and 2D6. An ex vivo model of cryopreserved human hepatocytes was used to evaluate the CYP450 metabolism induction potential of curcumin for CYP P450 3A4, 2C8/2C9, and 2D6. Results: In the in vitro CYP450 inhibition studies, curcumin at any concentration did not inhibit CYP450 3A4 or CYP450 2D6 activity. At a curcumin concentration of 58.3 μM, 10.5% and 22.5% inhibition of CYP450 2C9 and CYP450 2C8 activity, respectively, was observed. In the ex vivo hepatocyte inductions studies, minimal to no induction of CYP450 3A4, CYP450 2C8/2C9 or CYP450 2D6 was observed. Rifampicin did not induce the metabolism of curcumin and curcumin did not induce its own metabolism. Conclusion: There is low potential for CYP450 mediated drug interactions at physiologic serum concentrations of liposomal curcumin. Based on preliminary data, liposomal curcumin will not interact with other chemotherapy agents that are metabolized and/or eliminated via the primary drug metabolizing CYP450 pathways. Copyright© 2010 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved ER -