
Abstract. Background/Aim: p62 (also known as sequestosome
1) is involved in cancer progression, and high expression of
p62 indicates poor clinical outcome in several cancer types.
However, the association between p62 gene expression and
cancer stem cells (CSCs) in breast cancer subtypes remains
unclear. Materials and Methods: In the present study, genomic
datasets of primary breast cancer (The Cancer Genome Atlas,
n=593; and Molecular Taxonomy of Breast Cancer
International Consortium, n=2,509) were downloaded. p62
Expression was then examined in normal and breast cancer
tissues derived from the same patients. Kaplan–Meier and
multivariate Cox regression analyses were employed to
evaluate disease-specific survival. Next, the effect on cell
viability and in vitro tumor-sphere formation of p62 knockdown
using targeted small interfering RNA was assessed by using
cells with high activity of aldehyde dehydrogenase 1
(ALDH1high). Results: Patients with normal-like, luminal A or

luminal B breast cancer with p62high had poor prognosis.
Furthermore, patients with p62high ALDH1A3high luminal B
type also exhibited poor prognoses. Knockdown of p62
suppressed viability and tumor-sphere formation by ALDH1high

cells of the luminal B-type cell lines BT-474 and MDA-MB-
361. These results suggest that p62 is essential for cancerous
progression of ALDH1-positive luminal B breast CSCs, and
contributes to poor prognosis of luminal B breast cancer.
Conclusion: p62 is potentially a prognostic marker and
therapeutic target for ALDH1-positive luminal B breast CSCs.

Breast cancer has the highest prevalence among cancers of
women worldwide, with 2.26 million new cases (24.5% of all
cancer cases in women) and 685,000 cancer-associated
mortalities (15.5% of all cancer-associated mortalities among
women) annually (1). Breast cancer is classified using two
parameters: Immunohistochemistry and gene-expression
patterns [prediction analysis of microarray 50 (PAM50)] (2-8).
Based on its PAM50, breast cancer is classified into at least six
subtypes: Normal-like, luminal A, luminal B, human epidermal
growth factor receptor type 2 (HER2)-enriched, claudin-low
and basal-like (5, 7, 8). Among these, the luminal B type
expresses estrogen receptor, and certain luminal B tumors
express HER2 and highly express proliferation-related genes
such as marker of proliferation Ki-67 (MKI67). In addition, the
luminal B type has poorer prognosis (7, 9-15). Breast cancer
treatment mainly entails surgery, radiotherapy and drug
therapy, including chemotherapy, endocrine therapy and
molecular targeted therapy. However, there are still numerous
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refractory cases, and further stratification and development of
prognostic markers and therapeutic targets are required for
improving quality of life of patients. Luminal B type can be
treated with endocrine therapy and a HER2-targeted antibody,
such as trastuzumab (12, 14). Given its poor prognosis, it is
necessary to identify effective prognostic markers and
molecular targets for the luminal B breast cancer subtype.

Tumor consists of both cancer stem cells (CSCs) and
differentiated cancer cells. CSCs exhibit stem cell-like functions
such as self-renewal, multipotency and tumorigenicity (16, 17).
Since the majority of CSCs are resistant to conventional
antitumor treatments, such as chemotherapy and radiotherapy,
the development of targeted therapies against CSCs is needed
to improve the clinical outcomes of patients (17, 18).

Aldehyde dehydrogenase 1 (ALDH1) is an enzyme that
converts aldehydes into carboxylic acids. ALDH1A1 and
ALDH1A3 are known as CSC markers in several cancer types
(19-24). Expression of ALDH1A1 and ALDH1A3 is correlated
with tumor grade, metastasis and prognosis of patients with
breast cancer (25-27), and ALDH1A3 significantly contributes
to ALDH1 activity in breast cancer (25, 28).

p62 (also known as sequestosome 1) is a multifunctional
adapter protein that is involved in various physiological
functions (29), including nuclear factor-ĸB signaling (30-33),
antioxidant response (34) and autophagy (35-37). p62 is
overexpressed (38-48) in several cancer types, and high p62
expression is associated with poor prognosis (41, 44, 46, 49-
52) in several types of cancer. In breast cancer, p62 gene and
protein are overexpressed (53-55) and high p62 protein
expression is associated with poor prognosis of overall and
disease-free survival (54, 56). In addition, patients with high
p62 gene expression have shorter recurrence-free (55, 57)
and metastasis-free (55) survival. However, the association
between p62 gene expression and CSCs among breast cancer
subtypes remains unclear.

The present study examined the association between p62
and ALDH1A3 among breast cancer subtypes. Furthermore,
we also examined the role of p62 in ALDH1A3-positive
CSCs of luminal B breast cancer.

Materials and Methods
Analysis of The Cancer Genome Atlas dataset (TCGA). TCGA breast
cancer dataset (58) was downloaded from Oncomine
(https://www.oncomine.org; Thermo Fisher Scientific, Inc., Waltham,
MA, USA) (59) on January 5, 2021. This dataset contains mRNA
expression data from 61 normal breast tissue and 532 primary breast
tumor samples, and the clinicopathological data of these patients had
been previously reported (60). The expression of p62 mRNA (Probe
ID: A_23_P81399, A_23_P81401) is presented using the log2
median-centered ratio for both normal and cancer tissues. p62
mRNA were plotted using a paired comparison of normal versus
cancer tissue from the same patients (n=60) using the Wilcoxon
signed-rank test. Two-sided values of p<0.05 were considered to
indicate a statistically significant difference. All statistical analyses

were carried out using BellCurve for Excel ver. 3.10 (Social Survey
Research Information Co., Ltd., SSRI, Tokyo, Japan).

Analysis of the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset. The METABRIC dataset (n=2,509)
(61, 62) was downloaded from cBioportal (https:// www.cbioportal.org/)
(63, 64) on October 30, 2020. The clinicopathological data from these
patients had been previously summarized (60). The METABRIC dataset
contains data on both gene alterations (n=2,173) and mRNA expression
levels of primary breast cancer samples (n=1,904), and disease-specific
survival (DSS) data with mRNA expression levels (n=1,423). The
mRNA expression levels were compared among breast cancer subtypes
using the Kruskal–Wallis test followed by Steel–Dwass’s multiple
comparison test for post-hoc analysis. The optimal cutoff thresholds to
divide patients into groups with high and low expression were defined
using receiver operating characteristic curves associating p62, ALDH1A1
or ALDH1A3 gene expression with DSS. The optimal cutoff threshold
was determined using the Youden’s index. Survival curves based on
DSS were plotted using the Kaplan–Meier method, and curves were
compared using the log-rank (Cochran–Mantel–Haenszel) test. A
multivariate Cox regression analysis was used to evaluate the influence
of gene expression and to estimate adjusted hazard ratios (HRs) using
DSS statuses, with age at diagnosis as a confounding factor. Two-sided
values of p<0.05 were considered to indicate a statistically significant
difference. All statistical analyses were carried out using BellCurve for
Excel ver. 3.10 (SSRI).

Cell culture and siRNA transfection. The human luminal B type breast
cancer cell lines BT-474 and MDA-MB-361, and human normal (non-
transformed) mammary epithelial cell line MCF10A were obtained
from the American Type Culture Collection (Manassas, VA, USA)
and were cultured at 37˚C in the presence of 5% CO2. BT-474 cells
were cultured in Dulbecco’s modified Eagle’s medium containing
10% fetal bovine serum (Capricorn Scientific GmbH, Ebsdorfergrund,
Germany) and 0.01 mg/ml insulin (Nacalai Tesque, Inc., Kyoto,
Japan). MDA-MB-361 cells were cultured in Dulbecco’s modified
Eagle’s medium containing 10% fetal bovine serum. MCF10A cells
were maintained in mammary epithelial cell growth medium (Lonza,
Basel, Switzerland).

p62 knockdown (KD) in BT-474 and MDA-MB-361 cells was
achieved using transfection of two siRNAs and two Dicer-Substrate
siRNAs (DsiRNAs), which led to long-term suppression of gene
expression (65). The sequences were as follows. p62 siRNA-1: 5’-
GUGAACUCCAGUCCCUACATT-3’ and p62 siRNA-2: 5’-
GUGACGAGGAAUUGACAAUTT-3’) (Sigma-Aldrich; Merck
KGaA, St. Louis, MO, USA). p62 DsiRNA-1: sense strand: 5’-
GUGAACUCCAGUCCCUACAGAUGCC-3’ and antisense strand: 5’-
GGCAUCUGUAGGGACUGGAGUUCACCU-3’; and p62 DsiRNA-
2: sense strand: 5’-GUGACGAGGAAUUGACAAUGGCCAT-3’ and
antisense strand: 5’-AUGGCCAUUGUCAAUUCCUCGUCACUG-3’
(Integrated DNA Technologies, Inc., IDT, Coralville, IA, USA).
MISSION siRNA Universal Negative Control (Sigma-Aldrich; Merck
KGaA) and Negative Control DsiRNA (sense strand: 5’-
CGUUAAUCGCGUAUAAUACGCGUAT-3’ and antisense strand: 5’-
AUACGCGUAUUAUACGCGAUUAACGAC-3’) were used as
controls. Transfection was performed using Lipofectamine RNAiMAX
(Thermo Fisher Scientific, Inc.). Cells were transfected with 10 nM
siRNA and incubated for 24 h, followed by transfection with 10 nM
DsiRNA and subsequent incubation for an additional 24 h before assays
were performed.
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Western blotting. Western blotting of cells was performed as
previously described (60, 66-70). The following antibodies were
used: Rabbit polyclonal anti-p62 (PM045, 1:10000; Medical &
Biological Laboratories, Tokyo, Japan); mouse monoclonal anti-p62
(610833, 1:10,000; BD Biosciences, San Jose, CA, USA); rabbit
monoclonal anti-ALDH1A1 (ab52492, 1:3,000; Abcam, Cambridge,
UK); rabbit polyclonal anti-ALDH1A3 (PA5-29188, 1:5,000;
Thermo Fisher Scientific, Inc.); mouse monoclonal anti-β-actin
(60008-I-Ig, 1:10,000; ProteinTech Group, Inc., Rosemont, IL,
USA) as the primary antibodies. Goat anti-mouse and anti-rabbit
IgG (7076S and 7074S, 1:5,000; Cell Signaling Technology, Inc.,
Danvers, MA, USA) were used as secondary antibodies.

Isolation of ALDH1high cells. ALDH1high cells were isolated as
previously described (60, 66-68, 70, 71) from BT-474 and MDA-
MB-361 cells with p62 KD using ALDEFLUOR™ assay kit
(STEMCELL Technologies, Inc., Vancouver, Canada).

WST-8 assay. WST-8 assay was performed as previously described
(60, 66, 67, 69, 71). Briefly, after p62 KD, unsorted cells or sorted
ALDH1high cells were seeded into 96-well plates (1×105 cells/well)
(Thermo Fisher Scientific, Inc.) and incubated for 5 days (BT-474
and unsorted MDA-MB-361 cells) or 9 days (ALDH1high cells
derived from MDA-MB-361 cells). Cell viability was then assessed
using Cell Counting Reagent SF (Nacalai Tesque, Inc.). The results
of unsorted cells were analyzed by Dunnett’s multiple comparison
test (unpaired). The results of sorted ALDH1high cells were analyzed
by Student’s t-test. Two-sided values of p<0.05 were considered to
indicate a statistically significant difference. Data are presented as
the mean±standard error of the mean of three independent
experiments. All statistical analyses were carried out using
BellCurve for Excel ver. 3.10 (SSRI).

Tumor-sphere culture. Tumor-sphere formation assay was conducted
as previously described (60, 66-71). ALDH1high cells were isolated
via ALDEFLUOR assay upon p62 KD. The isolated ALDH1high
cells were plated in ultralow-attachment 96-well plates (5×104
cells/well) (Greiner Bio-One GmbH, Frickenhausen, Germany) and
cultured for 7 days (BT-474) or 15 days (MDA-MB-361) and were
captured using a DMIL LED microscope (Leica, Wetzlar, Germany).
The number and size of tumor spheres over 1,256 μm2 (BT-474)
and 314 μm2 (MDA-MB-361) were measured using ImageJ 1.51j8;
Java 1.8.0_112 (64-bit) (National Institutes of Health, Bethesda,
MA, USA). Statistical significance was determined with Student’s
t-test. Two-sided values of p<0.05 were considered to indicate a
statistically significant difference. Data are presented as the
mean±standard error of the mean of three independent experiments.
All statistical analyses were carried out using BellCurve for Excel
ver. 3.10 (SSRI).

Results

Kaplan–Meier analyses indicate that clinical outcomes are
poor for patients with p62high normal-like, luminal A or
luminal B breast cancer. p62 is highly expressed in breast
cancer compared with normal mammary epithelium (53, 55).
Consistent with this, the present study confirmed that p62
expression was significantly higher in breast cancer in paired
comparison of p62 mRNA expression between normal and

tumor tissues derived from the same patients in TCGA breast
cancer dataset (Figure 1A). Next, p62 expression was
examined in different breast cancer subtypes using the
METABRIC dataset. Among the subtypes classified based on
PAM50, p62 was highly expressed in the normal-like,
luminal A, luminal B and HER2-enriched subtypes than in
the claudin-low and basal-like types (Figure 1B).

To assess the role of p62 expression in PAM50 subtypes,
the present study analyzed a METABRIC dataset that
included the gene-expression data from patients with breast
cancer. The association between p62 expression and
prognosis among the breast cancer subtypes was examined
by using the Kaplan–Meier method to compare DSS between
patients with p62high and p62low disease. Firstly, patients
with p62high status had a poor prognosis in breast cancer
overall (p<0.001) (Figure 1C). Among the breast cancer
subtypes, patients with p62high disease had significantly
poorer clinical outcomes than those with p62low normal-like,
luminal A or luminal B disease (Figure 1C). Importantly,
there was no significant difference between the survival rates
of patients with p62high and p62low HER2-enriched, claudin-
low or basal-like type (Figure 1C). These results suggest that
p62 is involved in cancer progression and contributes to poor
clinical outcomes in patients with normal-like, luminal A and
luminal B breast cancer.

Kaplan–Meier analyses indicate that patients with p62high

ALDH1A3high luminal B breast cancer have a poorer clinical
outcome. ALDH1A1 and ALDH1A3 are known to be CSC
markers in several cancer types (19-24). Therefore, the
present study next assessed the prognosis of patients with
p62high ALDH1A1high and of those with p62high
ALDH1A3high status. Kaplan–Meier analyses did not show
significant differences between the DSS rates of patients
with p62high ALDH1A1high and patients with other statuses
in breast cancer overall nor in any subtype (Figure 2A).
Kaplan–Meier analyses showed that patients with p62high
ALDH1A3high had poorer clinical outcomes than those with
other statuses in breast cancer overall and in those with
luminal B breast subtype (Figure 2B). Importantly, there was
no significant difference between the survival rates of
patients with p62high ALDH1A3high disease and other
patients with normal-like, luminal A, HER2-enriched,
claudin-low or basal-like type (Figure 2B). In comparison of
DSS among patients according to combined expression of
p62 with ALDH1A1, no significant differences were noted in
breast cancer overall, nor in any subtype (Figure 3A),
whereas DSS of patients with p62high ALDH1A3high status
was significantly poorer only in those with the luminal B
breast cancer subtype (Figure 3B). These results suggest that
p62 is involved in cancer progression and contributes to poor
clinical outcomes of patients with ALDH1A3high luminal B
breast cancer.
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Figure 1. p62 is highly expressed in breast cancer, and patients with p62high normal-like, luminal A and luminal B breast cancer subtypes exhibit
poor clinical outcomes. A: Paired comparison of p62 mRNA expression in normal and tumor tissues derived from the same patients (n=60) in the
The Cancer Genome Atlas with Probe IDs A_23_P81399 (left) and A_23_P81401 (right). Median values are shown at the bottom of graphs.
Significantly different at **p<0.01 by Wilcoxon signed-rank test. B: p62 mRNA expression by breast cancer subtype. Significantly different at:
*p<0.05, **p<0.01 and ***p<0.001 by Kruskal–Wallis test followed by Steel–Dwass’s multiple comparison test for post-hoc analysis. C: Kaplan–
Meier analyses comparing disease-specific survival (DSS) according to p62 mRNA expression in breast cancer overall and by breast cancer subtype.
p-Values were calculated with the log-rank (Cochran–Mantel–Haenszel) test. HER2: Human epidermal growth factor receptor type 2.
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Figure 2. Patients with luminal B breast cancer with high expression of p62 (p62high) and aldehyde dehydrogenase 1A3 (ALDH1A3high) exhibit
poor clinical outcomes. A: Kaplan–Meier analyses comparing disease-specific survival (DSS) between patients with p62high ALDH1A1high disease
and others (p62high ALDH1A1low, p62low ALDH1A1high and p62low ALDH1A1low) in breast cancer overall and by breast cancer subtype. B: Kaplan–
Meier analyses comparing DSS between p62high ALDH1A3high patients and others (p62high ALDH1A3low, p62low ALDH1A3high and p62low
ALDH1A3low) in breast cancer overall and by breast cancer subtype. p-Values were calculated with the log-rank (Cochran–Mantel–Haenszel) test.
HER2: Human epidermal growth factor receptor type 2.
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Figure 3. Patients with luminal B breast cancer with high p62 (p62high) and high aldehyde dehydrogenase 1A3 (ALDH1A3high) expression exhibit
poor clinical outcomes. Kaplan–Meier analyses comparing DSS according to combined expression of p62 with ALDH1A1 (A) and with ALDH1A3
(B) in breast cancer overall and by breast cancer subtype. p-Values were calculated with the log-rank (Cochran–Mantel–Haenszel) test. HER2:
Human epidermal growth factor receptor type 2.



Multivariate Cox regression analysis indicates that patients
with p62high ALDH1A3high luminal B breast cancer have a
poorer clinical outcome. To confirm the results obtained by
Kaplan–Meier analyses, a multivariate Cox regression
analysis of DSS was performed with age at diagnosis as a
confounding factor using the same dataset (Table I). Patients
with p62high status had significantly poorer clinical outcomes
considering breast cancer overall, and normal-like or luminal
A subtype than those with p62low disease (Table I). Patients
with p62high luminal B, HER2-enriched, claudin-low or
basal-like subtypes did not have poorer clinical outcomes
than those with p62low status (Table I). Multivariable Cox
regression analysis also showed that p62high ALDH1A1high
status was not predictive of poorer clinical outcomes than
other p62 ALDH1A1 statuses in breast cancer overall nor in
any subtype (Table I). However, p62high ALDH1A3high
disease was predictive of significantly poorer clinical
outcomes compared with other p62 ALDH1A3 statuses in
breast cancer overall and in patients with luminal B breast
subtype (Table I) but not in those with other breast cancer
subtypes (Table I). These results suggest that p62 is involved
in cancer progression and contributes to poor prognosis of
ALDH1A3high, i.e.-CSC-enriched, luminal B breast cancer.

p62 siRNA KD suppresses cell viability and in vitro tumor-
sphere formation by ALDH1high cells. Based on the above

results, the present study next examined the possibility that
p62 may serve as a therapeutic target of ALDH1A3-positive
CSCs in luminal B breast cancer. The luminal B type breast
cancer cell lines BT-474 and MDA-MB-361 were used, which
overexpress p62 protein compared with the normal human
(non-transformed) mammary epithelial cell line MCF10A
(Figure 4A). p62 siRNA significantly suppressed p62 protein
expression in BT-474 and MDA-MB-361 cells (Figure 4B).
WST-8 cell viability assays with BT-474 and MDA-MB-361
cells showed that p62 KD suppressed cell viability (Figure
4C). These findings suggest that p62 contributes to cell
survival/proliferation in luminal B breast cancer.

ALDH1A1 protein was slightly expressed in BT-474 and
MDA-MB-361 cells. ALDH1A3 protein was overexpressed in
BT-474 compared with MCF10A and MDA-MB-361 cells
(Figure 4A). Next, to assess the role of p62 in ALDH1-
positive luminal B CSCs, ALDEFLUOR assays were used to
examine the effects of p62 depletion on cell viability and in
vitro tumor-sphere formation in ALDH1high BT-474 and
MDA-MB-361 cells. p62 KD led to suppression of cell
viability by ALDH1high BT-474 and MDA-MB-361 cells
(Figure 4D). This result suggests that p62 is essential for
survival/proliferation. In addition, p62 siRNA suppressed the
in vitro area of tumor spheres formed by ALDH1high BT-474
and MDA-MB-361 cells but it did not suppress the number of
in vitro tumor spheres (Figure 4E, respectively). These results
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Table I. Multivariable Cox regression analysis of disease-specific survival according to expression of p62, aldehyde dehydrogenase 1 (ALDH1A1)
and ALDH1A3 by breast cancer subtype.

Comparison                                                                                                         Hazard ratio*                                 95% CI                                   p-Value

p62high vs. p62low                                          All breast cancer                               1.31                                        1.10-1.55                                  0.0021
                                                                        Normal-like                                       2.30                                        1.25-4.23                                  0.0072
                                                                        Luminal A                                          1.47                                        1.05-2.06                                  0.024
                                                                        Luminal B                                           1.31                                        0.98-1.76                                  0.072
                                                                        HER2-enriched                                   1.50                                        0.98-2.31                                  0.062
                                                                        Claudin-low                                        0.71                                        0.40-1.29                                  0.26
                                                                        Basal-like                                            0.74                                        0.46-1.19                                  0.21
p62high ALDH1A1high vs. other                     All breast cancer                                1.19                                        0.96-1.48                                  0.11
                                                                        Normal-like                                         0.98                                        0.49-1.97                                  0.95
                                                                        Luminal A                                           1.04                                        0.71-1.52                                  0.85
                                                                        Luminal B                                           1.04                                        0.62-1.74                                  0.88
                                                                        HER2-enriched                                   1.32                                        0.77-2.25                                  0.31
                                                                        Claudin-low                                        0.15                                       0.021-1.10                                 0.062
                                                                        Basal-like                                            0.80                                        0.43-1.48                                  0.48
p62high ALDH1A3high vs. other                     All breast cancer                               1.26                                        1.05-1.52                                  0.014
                                                                        Normal-like                                         1.71                                        0.95-3.09                                  0.073
                                                                        Luminal A                                           1.36                                        0.94-1.98                                  0.11
                                                                        Luminal B                                          1.46                                        1.09-1.95                                  0.012
                                                                        HER2-enriched                                   1.42                                        0.90-2.22                                  0.13
                                                                        Claudin-low                                        0.61                                        0.24-1.56                                  0.31
                                                                        Basal-like                                            0.85                                        0.52-1.39                                  0.51

CI: Confidence interval; HER2: Human epidermal growth factor receptor type 2. *Adjusted by age at diagnosis, as estimated using the Cox
proportional hazard model. Significant differences are shown in bold.
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Figure 4. Knockdown of p62 with siRNA leads to the suppression of cell viability and in vitro tumor-sphere formation by luminal B breast cancer cells
with high aldehyde dehydrogenase 1 (ALDH1) expression. A: Western blotting of p62, ALDH1A1 and ALDH1A3 expression in native MCF10A, BT-
474 and MDA-MB-361 cells. B: Western blotting of p62, ALDH1A1 and ALDH1A3 in BT-474 and MDA-MB-361 cells with and without knockdown of
p62 using targeted siRNA-1/2 and DsiRNA-1/2. Non-treated MCF10A cells acted as a positive control. C: WST-8 assays assessing cell viability of BT-
474 and MDA-MB-361 cells after p62 knockdown using targeted siRNA-1/2 and DsiRNA-1/2. D: WST-8 assays assessing cell viability of ALDH1high
BT-474 and MDA-MB-361 cells after p62 knockdown using targeted siRNA-1 and DsiRNA-1. E: In vitro tumor sphere-formation culture was performed
to assess tumor-sphere formation by ALDH1high BT-474 and MDA-MB-361 cells following p62 knockdown via targeted siRNA-1 and DsiRNA-1.
Representative images are shown; scale bar, 50 μm. Data represent the mean±standard error of the mean of three independent experiments. Significantly
different at: *p<0.05, **p<0.01 and ***p<0.001 by Student’s t-test or Dunnett's multiple comparison (unpaired). n.s.: Not significantly different.  



suggest that p62 is also essential for tumor formation by
ALDH1-positive breast CSCs in luminal B breast cancer.
Furthermore, p62 may be a therapeutic target as well as a
prognostic marker in ALDH1-positive luminal B breast cancer.

Discussion

The present study demonstrated that p62 was essential for
survival/proliferation and tumor formation by ALDH1high
breast CSCs in luminal B breast cancer, and was involved in
cancer progression and contributed to poor prognosis of
ALDH1A3high luminal B breast cancer.

p62 gene amplification and enhancement of gene
expression were detected in clear-cell renal cell carcinoma
(72). Therefore, p62 gene alterations were assessed using the
METABRIC and TCGA datasets in this study. p62 gene
amplification was detected in 1.7% and 1.0% of breast cancer
cases, respectively (METABRIC: 37/2,173; and TCGA:
10/996), p62 mutation was detected in 0.0 and 0.50%
(METABRIC: 0/2,173; TCGA: 5/996), and deletion was
detected in 0.092 and 0.20% (METABRIC: 2/2,173; TCGA:
2/996), respectively. Thus, the high level of p62 mRNA
expression observed in breast cancer compared with that of
normal tissues may reflect the transcriptional activation of
p62. It has been reported that p62 is a target gene in cancer,
which is located downstream of nuclear factor-E2-related
factor 2, nuclear factor-ĸB and activator protein-1 (34, 73, 74).
A detailed mechanism of p62 gene expression in ALDH1-
positive luminal B CSCs will need to be investigated.

High p62 expression is associated with poor prognosis in
several cancer types, including breast cancer (38-48, 53-55).
However, few reports have mentioned an association between
p62 gene expression and prognosis, and none have mentioned
breast cancer subtypes. The present results revealed that
patients with p62high normal-like, luminal A and luminal B
breast cancer exhibited poor prognosis (Figure 1C), and
patients with p62high ALDH1A3high luminal B breast subtype
had poor clinical outcomes (Figure 2B and Figure 3B; Table
I). These results suggest that p62 is involved in cancer
progression and contributes to poor prognosis of ALDH1A3high
patients, that is, patients who have luminal B ALDH1A3-
positive breast CSCs. Among the breast cancer subtypes, p62
mostly appears to contribute to the poor prognosis of luminal
B type. In normal-like and luminal A breast cancer, p62 might
be associated with CSC markers other than ALDH1A1 and
ALDH1A3. ALDH1A1 contributes to adhesion, migration,
extravasation, initial colonization steps (28) and poor prognosis
(26); however, the present results suggest that p62 contributes
to survival/proliferation of and tumor formation by ALDH1A3-
positive (not ALDH1A1-positive) CSCs in luminal B breast
cancer (Figure 2A and Figure 3A; Table I). Thus, p62-targeted
therapies may be suitable for ALDH1A3-positive CSC-
enriched luminal B breast cancer. 

The characteristics of luminal B type compared with the
luminal A type are as follows: Luminal B is often HER2-
positive and exhibits high expression of proliferation-related
genes such as MKI67, as well as higher histological grade
and worse prognosis (7, 9-15). As far as we are aware, there
have been no reports to date on the association between p62
and luminal B breast cancer by PAM50 classification;
however, it has been reported that the expression of p62
protein is correlated with that of HER2 in breast cancer (75,
76), and that p62 facilitates HER2-induced mammary
tumorigenesis through multiple signaling pathways (77). On
the other hand, one of the characteristics of luminal B type
compared with HER2-enriched type is high estrogen receptor
expression (4, 5, 8). Thus, the contribution of p62 to luminal
B type ALDH1A3-positive CSCs may be associated with
HER2 and estrogen receptor.

As shown in Figure 4C, p62 contributes to cell
survival/proliferation in luminal B breast cancer cells. Xu et
al. reported that colony numbers were suppressed by p62
depletion via short hairpin RNA, and that tumor xenografts
derived from stably transfected, p62-depleted MDA-MB-231
cells exhibited significantly reduced growth rates and
numbers of Ki67-positive cells (54). Nozaki et al. reported
that MDA-MB-453 and MFM-223 cells transfected with p62
siRNA exhibited significantly reduced cell proliferative
activity according to the results of 5-bromo-2-deoxyuridine
incorporation assay (78). Notably, the results of our study
revealed that p62 KD led to stronger suppression of the
viability of sorted ALDH1high cells than of unsorted cells
(Figure 4C and D). This suggests that the contribution of p62
to cell survival/proliferation is greater in ALDH1-positive
CSCs than in other differentiated cells.

In vitro, p62 KD suppressed the size of tumor spheres, but
did not significantly reduce the number of tumor spheres
formed by ALDH1high cells (Figure 4E). These results
indicate that p62 is involved in cell proliferation rather than
in cell survival in ALDH1-positive luminal B breast CSCs.

It has been reported that p62 contributes to the characteristics
exhibited by CSCs, including survival/proliferation, tumor
formation (54, 78), infiltration, metastasis (55), and
chemotherapy and radiotherapy resistance (47, 52, 79-81) in
various cancer types, including breast cancer. p62 participates
in maintaining breast cancer stem-like properties by stabilizing
MYC proto-oncogene bHLH transcription factor mRNA (54),
and nuclear fctor-E2-related factor 2 activation (82). It is
necessary to investigate the mechanism by which p62 is
involved in these properties exhibited by ALDH1-positive
luminal B breast CSCs.

p62 protein interacts with atypical protein kinase C
(PKCλ), and this interaction is involved in several biological
functions (29, 83, 84). PKCλ is also essential for the survival
and in vitro tumor-sphere formation of ALDH1-positive
breast CSCs, and high expression of PKCλ and ALDH1A3
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is associated with poor prognosis at late tumor-stage of
breast cancer (68). Therefore, the association between p62
and PKCλ in ALDH1-positive luminal B breast CSCs should
be further investigated.

The present study revealed that p62 contributes to
survival/proliferation and tumor formation in ALDH1-
positive luminal B breast cells, which leads to cancer
progression and contributes to poor prognosis of ALDH1A3-
positive, i.e. CSC-enriched, luminal B breast cancer. Overall,
it can be concluded that p62 is potentially a prognostic
marker and therapeutic target for ALDH1-positive luminal B
breast CSCs.
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