
Abstract. Background/Aim: This study aimed to establish a
setup for ultra-high-dose-rate (FLASH) carbon-ion irradiation,
and to conduct the first human cell experiments using FLASH
carbon ions. Materials and Methods: A system for FLASH
carbon-ion irradiation (1-3 Gy at 13 or 50 keV/μm) was
developed. The growth and senescence of HFL1 lung fibroblasts
were assessed by crystal violet staining assays and senescence-
associated β-galactosidase staining, respectively. Survival of
HSGc-C5 cancer cells was assessed by clonogenic assays.
Results: The dose rates of carbon ions ranged from 96-195 Gy/s,
meeting the definition of FLASH. With both 13 and 50 keV/μm
beams, no FLASH sparing effect was observed on the growth
suppression and senescence of HFL1 cells, nor on the survival
of HSGc-C5 cells. Conclusion: We successfully conducted the
first human cell experiments with FLASH carbon ions. No
FLASH effect was observed under the conditions examined.

Radiotherapy is the most widely-used and effective anti-
tumor treatment (1). The key to successful radiotherapy
relies on expanding the therapeutic window by increasing the
dose delivered to tumors while sparing normal tissues. On
the basis of this concept, photon radiotherapy technologies
have advanced towards modalities providing greater dose
conformality, such as intensity-modulated radiotherapy and
stereotactic body radiotherapy (1). Particle therapy using
protons or carbon ions has also been pursued because
protons and carbon ions show greater dose conformality than

photons. In addition, carbon ions show a 2-3 fold greater
anti-tumor effect than photons (2). However, even with these
advanced radiotherapy modalities, some tumors remain
incurable because of insufficient dose delivery (e.g., highly
radioresistant tumors or tumors surrounded by radiosensitive
organs), highlighting the need to establish methods that
further expand the therapeutic window of radiotherapy.

In recent years, ultra-high-dose-rate (FLASH) irradiation has
attracted great interest because of its potential for lower toxicity
to normal tissue (1, 3). FLASH is defined as a single irradiation
with a dose rate equal to or greater than 40 Gy/s (1). To date,
the biological effect of FLASH irradiation has been investigated
using mainly photons and electrons (1, 3). The results of
previous animal studies are broadly consistent in terms of
showing a sparing effect of FLASH irradiation on normal
tissues of mice, including brain (4-9), lung (10-12), intestine
(13, 14), skin (15, 16), and other organs (17, 18); as well as
some organs of rats (19), mini-pigs (20), and zebrafish (21),
although a few studies have reported contradicting outcomes
(22, 23). Previous animal studies also agree on the similar anti-
tumor effects of FLASH and non-FLASH irradiation in both
orthotopic tumor models (4, 11, 19) and xenograft models (7,
11, 12, 24). Furthermore, in 2018, FLASH electrons (15 Gy in
90 ms) were used to treat a human patient with disseminated
cutaneous lymphoma (25). The treatment resulted in a rapid
tumor response with mild epithelitis and transient edema, and
is awaiting verification in a clinical trial. In contrast to photons
and electrons, the effects of FLASH irradiation on particle
therapy have not been fully investigated. Although there have
been several biological studies on FLASH protons, the results
are largely inconsistent in terms of normal tissue sparing (26-
31), whereas anti-tumor effects may be comparable between
FLASH and non-FLASH settings (26, 30, 32-36). However,
biological data on FLASH carbon-ion irradiation are lacking.

When conducting FLASH irradiation with carbon ions, it
is important to clarify the dose rate for the entire irradiation
target. In the scanning irradiation utilized in the clinic, a
given target is irradiated spot-by-spot over a period of time.
Thus, the average dose rate for the entire target is lower than
the dose rate for a given spot, which can be quite high at the
moment the pencil beam irradiation is delivered. Recently,
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we established a finely-tuned technique for irradiating high
linear energy transfer (LET) carbon ions, which we named
‘Carbon Knife’; this achieved a steep dose concentration to
a small target (i.e., 1-10 mm in width) (37, 38). In a previous
study, we estimated the dose distributions of 1 mm-sized fine
carbon-ion beams, resulting in an average dose rate of ~90
Gy/s (which corresponds to ~200 Gy/s during the beam
extraction from the synchrotron) at the center of the fine
beam near the Bragg peak depth (38). These data led us to
speculate that FLASH carbon ions could be achieved by
removing the collimators from the Carbon Knife device. This
study aimed to establish the technique of FLASH carbon-ion
irradiation at a single spot, and to conduct the first human
cell experiments using FLASH carbon ions.

Materials and Methods
FLASH carbon-ion irradiation systems. In this study, two beam
settings with different dose rates, namely, FLASH and non-FLASH,
were established. To assure the homogeneity of the dose rate over
the irradiation time, both settings were adjusted so that the irradiation
expired within one spill. Carbon-ion irradiation was performed using
a scanning vertical beam port at Gunma University Heavy Ion
Medical Center (GHMC) (39). The beam energy and intensity were
290 MeV/u and ~1×109 particles per second, respectively, similar to
values used in the clinic for cancer treatment (40). In the 2.67 s
operating cycle of the synchrotron, the flat-top duration was usually
~1 s, and the extraction duration was reduced by approximately half
to increase the beam intensity. For the non-FLASH irradiation, the
chopper opening duration and the attenuators of the accelerator
injector were adjusted to reduce the beam intensity by ~2%. The
delivered beam profile at the isocenter (i.e., sample position) was
measured by radiochromic film. The standard deviation of the beam
profile, approximated by a Gaussian distribution, was ~2.4 mm.
Nitrogen gas was flowed to the dose monitor, which was of a parallel
plate ionization chamber type. To examine the dose monitor response
at a high dose rate, dose measurements were performed at the
isocenter position while changing the dose monitor voltage applied.
An Advanced Markus ionization chamber (PTW 34045, PTW,
Freiburg, Germany) was used for the dose and dose-rate
measurements. In addition, the ionization chamber voltage
dependence was measured to confirm the response of the dosimeter
near to the Bragg peak depth of high-dose-rate beams.

FLASH carbon-ion irradiation to biological samples. In reality, the
spill structure of the beam extracted from the synchrotron is not
absolutely constant at the beginning, with an abrupt increase
generally seen. Therefore, especially at high-dose-rate irradiation,
the beam intensity can change rapidly over a short moment,
representing irradiation with deposition of a dose of several Gy. It
takes approximately 10 ms to irradiate a dose of several Gy with
high-dose-rate irradiation. To avoid using the first rising part of the
spill and to obtain a constant dose rate at the sample position, the
beam was irradiated to a spot sufficiently off the sample position
for approximately the first 100 ms of the spill, and was then directed
to irradiate the central target. The preset of the dose monitor was
calibrated using the ionization chamber for each irradiation
condition, to deal with possible changes in monitor response due to

dose rate, and the dose rate was obtained from the reading of the
dosimeter and the time of the monitor output signal.

The LETs were set to 13 and 50 keV/μm, corresponding to the
plateau region and vicinity of the Bragg peak of the carbon-ion
beams, respectively. To adjust the LETs, the beam range was shifted
by 124.5 mm in the latter case with a variable-water-thickness
phantom including totally 20-mm-thick acrylic windows. The beam
sizes were ~2.6 and ~3.7 mm in standard deviations for LETs of 13
and 50 keV/μm, respectively. The doses to the cell samples were set
at 1, 2, and 3 Gy. The well bottom diameter of the cell sample was
6.35 mm, and its dose and dose rate were evaluated with an
Advanced Markus chamber with a sensitive area of 5 mm. Due to
single spot irradiations with specific beam sizes, there were
variations in the doses in the ionization chamber and sample wells.
Therefore, in the following, the measured values, i.e., the average
values, in the ionization chamber were used as nominal values to
indicate the dose and dose rate.

X-ray irradiation. To verify the robustness of the experimental
systems, X-ray irradiation was performed using an MX-160Labo
irradiator (160 kVp, 1.06 Gy/min; mediXtec, Matsudo, Japan) (41, 42).

Cell lines and cell culture. The human lung fibroblast HFL1 and
human salivary gland tumor line HSGc-C5 were used in this study.
HFL1 was selected to represent normal cells considering the fact
that the normal tissue protective effect of FLASH irradiation was
first discovered with lung fibrosis as the endpoint (12). HSGc-C5
was selected as being representative of cancer cells because this line
demonstrates a typical tumor response to ionizing radiation, and has
been used as a reference in the beam design of clinical carbon-ion
radiotherapy equipment (43, 44). HFL1 was obtained from Riken
Bioresource Center (Tsukuba, Japan), and HSGc-C5 was obtained
from JCRB Cell Bank (Ibaraki, Japan). Cells were cultured in
RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA) supplemented
with 10% fetal bovine serum (Life Technologies, Carlsbad, CA,
USA) at 37˚C with 5% CO2.

Crystal violet staining assays for cell proliferation. The
radiosensitivity of HFL1 cells, which lack a colony-forming ability,
was assessed using crystal violet staining assays, as described
previously (45, 46). Briefly, cells were seeded on 96-well plates and
incubated at 37˚C with 5% CO2 for 24 hours. Cells were then
irradiated and incubated for an additional 5 days, after which they
were fixed with 25% methanol (FUJIFILM Wako Chemicals,
Osaka, Japan), stained with 0.1% crystal violet (Sigma-Aldrich),
and solubilized in 200 μl of 10% acetic acid (FUJIFILM). The
absorbance of the solution at 570 nm was measured using a
Multiskan FC microplate photometer (Thermo Fisher Scientific,
Waltham, MA, USA). The absorbance for a given dose was
normalized to that of the non-irradiated control.

Senescence-associated β-galactosidase staining. Cellular
senescence in HFL1 cells was assessed by senescence-associated β-
galactosidase (SA-β-gal) activity using a senescence β-galactosidase
staining kit (Cell Signaling Technology, Danvers, MA, USA) (45,
47, 48). Cells were seeded on 96-well plates and incubated at 37˚C
with 5% CO2 for 24 hours. Cells were then irradiated and incubated
for an additional 5 days, before being subjected to SA-β-gal staining
following the manufacturer’s protocol. Blue-stained cells observed
on light microscopy were considered positive for the staining. Using
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a 10× objective lens, the number of positive-stained cells in a
randomly selected field was counted. The count was performed in
triplicate for each experimental setting and three independent
experiments were performed.

Clonogenic assays. The radiosensitivity of HSGc-C5 cells was
assessed using clonogenic assays, as described previously (49).
Briefly, cells were seeded on culture plates and incubated at 37˚C
with 5% CO2 for 12 h. Cells were then irradiated and incubated for
an additional 7 days, before being fixed with 25% methanol and
stained with 0.1% crystal violet. Colonies consisting of 50 or more
cells were counted using an inverted microscope. The surviving
fraction for a given dose was calculated by dividing the number of
colonies for the dose by the number of seeded cells for the dose,
which was further divided by the plating efficiency calculated from
unirradiated controls. The surviving fractions were fitted to a linear
quadratic model (50), from which α, β, and D50 (i.e., the dose
reducing cell survival to 50%) were calculated (43). Each
experiment was performed in quadruplicate, and three independent
experiments were performed.

In this study, clonogenic assays were performed using 96-well
plates to ensure the robustness of the FLASH carbon-ion dosimetry.
Although clonogenic assays are more commonly performed using 6-
well plates or culture flasks with a greater area, the robustness of
clonogenic assays using 96-well plates has been demonstrated in
multiple studies over several decades (51-53). Furthermore, to verify
the robustness of the 96-well plate-based clonogenic assays, the
consistency of the experimental outcomes of these assays were
compared with those of 6-well plate-based assays (which are routinely
performed in-house) (47, 48, 50, 54, 55) using HSGc-C5 cells. The
results showed that the X-ray sensitivity of HSGc-C5 cells was highly
consistent between 96-well and 6-well plate-based clonogenic assays
(Supplementary Figure 1), suggesting the technical robustness of the
96-well plate-based clonogenic assays performed in this study.

Statistical analysis. Differences between two groups were examined
using the Mann–Whitney U-test and were considered statistically
significant when the p-value was below 0.05 after Bonferroni

correction for multiple comparisons. All statistical analyses were
performed using GraphPad Prism 8 (GraphPad Software Inc., San
Diego, CA, USA).

Results
The applied voltage dependences of the dose monitor and
ionization chamber are shown in Figure 1. The responses of
the dose monitor and ionization chamber at the voltages
normally used were almost constant, thereby inferring that
the recombination effect was almost negligible.

We then examined the dose rate and dose for the high-dose-
rate carbon ions under the settings used for the cell
experiments (i.e., 1, 2, and 3 Gy at 13 and 50 keV/μm; Table
I). Five repeated measurements resulted in dose rates of 96-
195 Gy/s with a standard deviation of 13-22%, meeting the
definition of FLASH. The standard deviation of the dose for
FLASH carbon ions was 3-6%. For use as a control for the
cell experiments, a non-FLASH setting (carbon ions exerted
in a single spill, as in the FLASH setting) was established,
which gave dose rates for non-FLASH carbon ions of 8-13
Gy/s with standard deviation of 4-9%. The standard deviation
of the dose for non-FLASH carbon ions was 0.1-0.4%.

Having established the irradiation setting for FLASH
carbon ions, we performed in vitro experiments using human
cell lines with two different LETs, i.e., 13 keV/μm and 50
keV/μm, representing the entrance and high-LET region of
clinical carbon-ion beams, respectively. In lung fibroblast
HFL1 cells, there was no significant difference in post-
irradiation growth suppression between FLASH and non-
FLASH carbon ions for both 13 keV/μm and 50 keV/μm
beams (Figure 2A). There was also no significant difference
in the induction of senescence [the predominant mode of
post-irradiation cell death in fibroblasts (45)] between
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Figure 1. (A) Dose rate reading at the surface plateau versus dose monitor voltage. The voltage used normally is 1500 V. (B) Dose rate reading at
the Bragg peak versus chamber voltage measured by the Advanced Markus ionization chamber. The voltage used normally is 300 V.



FLASH and non-FLASH carbon ions for both 13 keV/μm
and 50 keV/μm beams (Figure 2B, 2C). In the HSGc-C5
cancer cell line, there was no significant difference in post-
irradiation clonogenic survival between FLASH and non-
FLASH carbon ions for both 13 keV/μm and 50 keV/μm
beams (Figure 3, Table II).

Discussion

In this study, we established a system for investigating the
FLASH effects of carbon-ion beams and irradiated cell
samples while adjusting the dose, dose rate and LET. This is
the first report to present the response of human cells to
carbon-ion irradiation by changing all of these parameters.

In scanning irradiation, each spot distributed within a target
is irradiated with a pencil beam to deliver a prescribed dose
to the entire target, so that the dose rate at each point in the
target changes with time. It is important to specify the
irradiation conditions such as the dose rate to discuss the
FLASH effect of carbon-ion beams. This study provides the
advantage that the dose rate, as well as the dose, can be
specified by completing single spot irradiation to a sample
with just one spill. However, due to the beam’s lateral profile,
the dose and dose rate within the irradiated sample size are
not constant. Nevertheless, the dose rate variation is in the
range that satisfies the FLASH or non-FLASH condition, and
the comparative studies on biological responses are considered
possible between both conditions because the beam size is
almost the same under each condition.

The biological mechanism by which FLASH irradiation
spares normal tissue remains unclear; however, several
hypotheses have been proposed (1, 3, 21). One hypothesis is
that FLASH irradiation depletes oxygen from the irradiated
tissues, which functions to decrease the indirect effects of
DNA damage caused by ionizing radiation (3, 21). This

hypothesis rationalizes a greater sparing effect in normal
tissues than in tumors because the physiological oxygen
concentration is generally higher in normal tissues.
Importantly, the oxygen effect of carbon ions is LET-
dependent, and is generally smaller than that of photons.
Thus, the FLASH sparing effect of carbon ions should be
investigated with a specific focus on LET. The irradiation
system presented in the present study will be of great value
for this purpose because it enables carbon ions to be
irradiated at any point within the clinically relevant spread-
out Bragg peak. The present study showed no FLASH
sparing effect under normoxic conditions, irrespective of the
LET (13 and 50 keV/μm), warranting a deeper investigation
using anoxic, hypoxic and physoxic conditions. Another
hypothesis is the so-called immune hypothesis, which
proposes the sparing of lymphocytes circulating within the
irradiation field (3). For example, Rama et al. reported that
FLASH irradiation increased intratumoral recruitment of T
lymphocytes from peripheral regions in an orthotopic mouse
lung tumor model (32). Despite accumulating pre-clinical
data, an important caveat in investigations into FLASH
irradiation is the lack of consistency between experimental
parameters such as dose rate, total dose, and pulse rate,
making it difficult to interpret experimental outcomes in
comparison with each other. Furthermore, it may be possible
that the mechanism by which the FLASH sparing effect is
exerted varies between tissues and tumors, underscoring the
need for further mechanistic research.

During the preparation of this manuscript, another group
independently released an online report of FLASH carbon-
ion experiments using Chinese hamster ovary cells (56). In
their study, the authors evaluated 13 keV/μm FLASH
carbon-ion irradiation for an area of 10×10 mm, which is
greater than that achieved in the present study. Nevertheless,
it is likely that the dose rate at each point in the irradiated
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Table I. Measured dose and dose rate under each condition for cell irradiation. 

Setting                                      LET (keV/μm)                         Nominal dose (Gy)                                 Dose (Gy)                                  Dose rate (Gy/s)

FLASH                                               13                                                  1                                              0.945±0.056                                      96.5±13.4
                                                                                                                 2                                              2.036±0.073                                     153.4±27.7
                                                                                                                 3                                              3.023±0.118                                     145.8±18.8
                                                           50                                                  1                                              0.976±0.039                                     177.7±39.0
                                                                                                                 2                                              2.073±0.119                                     179.5±34.3
                                                                                                                 3                                              3.006±0.087                                     195.1±27.3
Non-FLASH                                      13                                                  1                                              0.980±0.004                                        7.7±0.5
                                                                                                                 2                                              1.999±0.004                                        9.3±0.3
                                                                                                                 3                                              2.994±0.008                                        8.4±0.8
                                                           50                                                  1                                              1.006±0.001                                        7.9±0.5
                                                                                                                 2                                              2.008±0.002                                       12.7±0.9
                                                                                                                 3                                              3.007±0.004                                       12.3±1.1

For each setting, mean and standard deviation of five measurements are shown. FLASH, Ultra-high dose rate; LET, linear energy transfer.



area may differ from the nominal value considering the
scanning nature of the irradiation. In the FLASH carbon-ion
irradiation technique established in the present study, the
dose rate can be specified because a single spot is irradiated
within one spill duration; however, the dose and dose rate
have considerable variations due to the beam size. In any
case, it is important to make the irradiation conditions used
for cell experiments (including dose rate) quantifiable. From

a biological standpoint, the authors showed the results of two
independent clonogenic assays using different oxygen
concentrations and observed the FLASH sparing effect in
two experiments at 0.5% O2, and one experiment at 4% O2,
but not at 0% and 21% O2, warranting future study.

On the basis of the work presented here, we suggest
pursuing the following points to investigate the clinical
applicability and biological mechanism of FLASH carbon
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Figure 2. Sensitivity of human fibroblast HFL1 to FLASH or non-FLASH carbon ions. (A) Growth suppression at 5 days post-irradiation assessed by
crystal violet staining assays using absorbance at 570 nm (n=3). Bars indicate median. (B) Induction of senescence at 5 days post-irradiation assessed
by senescence-associated β-galactosidase (SA-β-gal) staining (n=3). Bars indicate median. Data are shown after normalizing to the absorbance at
570 nm obtained from crystal violet staining assays for the corresponding experimental settings. (C) Representative micrographs of SA-β-gal staining
samples. To confirm the robustness of the experimental systems, the data from cells treated with 6 Gy of X-rays are also shown, on the basis of a
previous study reporting that the relative biological effectiveness of carbon ions over X-rays (as assessed by crystal violet staining assays) was
approximately 2 (45). FL, FLASH; NT, no treatment; #, number. p-Values assessed by Mann–Whitney U-test are shown after Bonferroni correction.

Figure 3. Sensitivity of human cancer cell line HSGc-C5 to FLASH or non-FLASH carbon ions, as assessed by clonogenic assays (n=3). (A)
Clonogenic survival at 13 keV/μm. (B) Clonogenic survival at 50 keV/μm. (C) Survival curves generated by fitting the data shown in A and B to a
linear quadratic model. FL, FLASH. p-Values assessed by Mann–Whitney U-test are shown after Bonferroni correction.



ions. Considerable fluctuations in dose and dose rate are
observed, especially at high-dose-rate conditions, as shown
in Table I. We consider that each spill extracted from the
accelerator is unstable, and the spill itself may include spike-
like time structures. Therefore, the response on the dose
monitor can change instantaneously, although it seems to be
almost stable in the measurement of the entire spill, as
shown in Figure 1A. To obtain further stable dose rates and
doses, it would be necessary to improve the spill structure
by adjusting the accelerator. In addition, the system requires
development so that it can form a larger, more uniform field
size and a spread-out Bragg peak to realize irradiations under
FLASH conditions closer to clinical situations. In such cases,
it will be important to define the irradiation conditions, such
as the average and instantaneous dose rates at the spot
position, to accumulate data, and to develop an
understanding of the dose-rate dependence of the biological
response. From a biological standpoint, the effect of FLASH
carbon ions needs to be evaluated in relation to LET and
oxygen concentration in vitro, which should then be followed
by in vivo experiments.

In conclusion, we established the technique of FLASH
carbon-ion irradiation with a specific dose rate at a single spot.
We also established spill-matched non-FLASH carbon-ion
irradiation for use as a control in biological experiments.
Using these techniques, we present the first human cell
experiments using FLASH carbon ions. Our results indicated
no FLASH sparing effect in normal and cancer cells under
normoxia. This is the first study to report the response of cells
to FLASH carbon ions with varying dose, dose rate and LET.
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