
Abstract. Background: Compared to two-dimensional
cultures, three-dimensional (3D) cultures have many advantages
in cancer studies. Nevertheless, their implementation is
unsatisfactory. This study aimed to develop an anchorage-
dependent 3D culture model for colorectal cancer research.
Materials and Methods: Human HCT116, DLD-1 and SW620
colorectal cell lines were cultured in a gelatin sponge, and its
applicability for morphological examination was studied.
Results: The resulting specimens were suitable for scanning
electron microscopy, transmission electron microscopy, and
immunohistochemical examination. HCT116 formed smaller
structures and migrated through the pores of the sponge. DLD-
1 formed larger structures with tight cell-to-cell adhesion.
SW620 also formed large structures but small clustered cells
tended to attach to the anchorage more favorably.
Immunohistochemical staining demonstrated phosphorylated
yes-associated protein (YAP) localized near the attachment site
in HCT116 cells. Conclusion: Because the gelatin sponge
provided suitable anchorage and the cultured cells formed
distinguishable 3D structures, this method may be useful for
further colorectal cancer research.

It has been more than four decades since three-dimensional
(3D) cell culture became popular. Compared to ordinary two-
dimensional (2D) cell cultures, 3D culture provides improved
cell-to-cell contact and physiological structures similar to the
in vivo organization. Therefore, 3D cultures have been used
for studies such as of cancer proliferation, progression,

migration, metastasis, drug resistance, and of stem cells.
However, although 3D cultures have many advantages, the
methods used in their implementation are still inconsistent and
unsatisfactory. The methods are generalized as ‘3D culture’,
so different types of culture methods exist, and the results
strongly depend on these methods.

At least two types of culture are categorized. One is
anchorage-independent culture, without using a substrate for
cellular attachment or the formation of cell aggregation. This
type of culture is under nonadherent conditions, without an
extracellular matrix (ECM). The other type is anchorage-
dependent culture that utilizes substrates to promote cell-to-
cell or cell-to-scaffold, such as those using a membrane,
microfluidic channels, and ECM.

Examples of anchorage-independent cultures are cultures
on low-attachment plates (1) through coating of their surfaces
with compounds such as polyhydroxy ethyl methacrylate (2)
and agarose (3). This can also be achieved as a result of
agitation using spinner flasks or gyratory shakers (4), through
the hanging drop method where a drop of medium containing
a cell suspension promotes cell-to-cell interactions within the
confines of the drop (5), and by culturing cells with soft agar
(6). The resulting structures are commonly referred to as
multicellular tumor spheroids (MCTs).

For anchorage-dependent cultures, specific substrates or
materials are utilized. One of these is composed of a
membrane or membranes, and the resulting structures are
multilayered cell cultures composed of tumor cells and other
cells on a specific membrane designed for the measurement
of drug diffusion (7, 8). Microfluidic channels with
micropillars are also manufactured and utilized, and ECM
can be added to these chambers to allow for ECM–cell
interactions (9). The basement membrane extract from an
Engelbreth–Holm–Swarm murine tumor, a form of laminin-
rich ECM (10-13), and collagen have also been employed as
substrates or scaffolds for anchorage (14, 15). These methods
have been reviewed elsewhere (16), and there are several
advantages and disadvantages in anchorage-independent and
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anchorage-dependent culture. For example, there can be
difficulty in retrieving cells from anchorage-dependent 3D
culture formation but they can be used in large-scale
production with the incorporation of growth factors (17).

The more potent advantage of anchorage-dependent
culture is that it can mimic how cells move into tissues or
organs in a living body and allow understanding of tumor
extension dynamics as an in vitro culture system. In contrast,
because such physiological conditions vary depending on the
tissues or organs of the body, it is difficult to create a
generalized model. Therefore, various culture methods are
needed that correspond to various different situations.

Admittedly, further research requires the development of
far more complex 3D culture models (16). This study aimed
to develop an anchorage-dependent 3D culture system with
existing materials. Because the numbers and choices of
currently available anchorage-dependent 3D system are
limited, we ho[e this method may provide an optional means
of culture in colon cancer research.

Materials and Methods

Anchorage for 3D culture. As an anchorage for 3D culture, an
absorbable gelatin sponge was used. This type of sponge is a sterile,
water-insoluble, malleable gelatin sponge intended for hemostatic
use by applying to a bleeding surface and has been in use for more
than 70 years (18). The sponge is off-white and porous in
appearance and was chosen because of its biocompatibility, in vivo
stability, mesh pore size, and adequate cell attachment as anchorage
for adherent cells. Because the material is mainly composed of
ECM and provided in stable quality at a reasonable price, it was
hypothesized that the material is useful as an alternative anchorage
for 3D cultures.

Cell culture. The human colorectal adenocarcinoma cell lines DLD-1,
HCT116, and SW620 (American Type Culture Collection, Manassas,
VA, USA) were cultured in Dulbecco’s modified Eagle’s medium
(DLD-1 and SW620) or RPMI 1640 (HCT116; Gibco, Thermo Fisher
Scientific, Tokyo, Japan) supplemented with 10% fetal bovine serum
and penicillin/streptomycin (100 IU/ml and 100 μg/ml; Sigma-
Aldrich, St. Louis, MO, USA). Cells (1×104) were inoculated and
cultured in separate four-well chamber slides (Nunc Lab-Tek II;
Thermo Fisher Scientific). In morphological and immuno -
histochemical experiments, these 2D-cultured cells were compared to
cells in 3D culture. For 3D culture, a gelatin sponge was sterilely cut
into 10 mm cubes and immersed into minimum amounts of culture
medium before the experiment. To allow cells to attach, dispersed
colorectal cells (1×104 cells/100 μl medium) were injected directly
into the sponge and left for 4 h at 37˚C in 5% CO2 incubator without
additional cell culture medium. After attachment of the cells, the
sponges were transferred into a 10 cm dish, immersed in 10 ml culture
medium and further cultivated for 3 to 20 days.

Gelatin zymography. The activities of matrix metalloproteinase 2
(MMP2) and other gelatinases expressed by these cell lines were
compared using gelatin zymography. After cell culture, the medium
was changed to a fetal bovine serum-free medium and cells were

further cultivated for 24 h. The supernatant of the culture medium
was centrifuged to eliminate dead cells and filtered with a 0.22 μm
syringe filter. Using the filtered supernatant, gelatin zymography
was performed with a standard protocol (19). Data were compared
to that of MMP9- and proMMP2-producing SW1736 human
undifferentiated thyroid carcinoma cells (from Memorial Sloan
Kettering Cancer Center, NY, USA) (20).

Morphological observations. Light optical microscopy: 2D-Cultured
cells were observed under phase-contrast microscopy (IX71 inverted
microscope; Olympus Corporation, Tokyo, Japan). 3D- Cultured
specimens were fixed with 2% paraformaldehyde in 0.1 M in
phosphate buffer (pH 7.3, 400 mOsm), embedded into paraffin
blocks (VIP5Jr.; Sakura Finetek, Tokyo, Japan), and sliced with a
microtome (REM-700; Yamato Kohki Industrial Co., Saitama,
Japan) at 5 μm thickness. The sections were then stained with
hematoxylin and eosin and examined under a light microscope (BZ-
9000; Keyence, Osaka, Japan). For immunohistochemical staining,
2D- and 3D-cultured cells were fixed with 1.2% glutaraldehyde in
0.1 M phosphate buffer and reacted with anti-human corticotropin-
releasing hormone receptor 1 (CRHR1; GeneTex, Irvine, CA, USA)
or anti-phosphorylated yes-associated protein (YAP) (Cell Signaling
Technologies, Danvers, MA, USA) at 200× dilution according to
the manufacturer’s protocol. These antibodies were visualized with
Vectastain ABC kit (Vector Laboratories, Burlingame, CA, USA).

Electron microscopy: 3D-Cultured cells were fixed with 1.2%
glutaraldehyde for scanning electron microscopy (SEM) or 2%
glutaraldehyde for transmission electron microscopy (TEM) in 0.1
M phosphate buffer. SEM specimens were dehydrated by a critical
point dryer (HCP-2; Hitachi High-Tech Corp., Tokyo, Japan)
followed by immersion in serial dilutions of ethanol/water and
replacement with isoamyl acetate. These dehydrated specimens were
coated by Au-Pd magnetron sputter and examined at 2.0 kV under
Regulus8100 field-emission SEM (Hitachi High-Tech Corp.).

Other specimens were further fixed with 1% OsO4 in 0.1 M
phosphate buffer for 2 h, immersed in serial dilutions of
ethanol/water, and replaced with methyl oxirane. After embedding
in epoxy resin, the specimens were sliced using an ultra-microtome
(Reichert-Nissei Ultracut; Leica, Wetzlar, Germany), stained with
saturated uranium acetate aqueous solution (10 min) and Reynold’s
lead citrate (5 min), and examined using TEM (JEM 1400 PLUS;
Japan Electron Optics Laboratory Ltd., Tokyo, Japan).

The immunohistochemically stained samples were also fixed
with 1% OsO4 for 1 h, embedded into n-butyl glycidyl ether (QY-
1; Nisshin EM Co., Tokyo, Japan), and observed under TEM
without further staining.

Results
To examine the morphology of each cell line, cells in 2D culture
were observed under phase-contrast microscopy (Figure 1A).
HCT116 and DLD-1 cells tended to grow in a cobblestone
pattern as a single layer adhering to the bottom surface of the
chamber slide. In contrast, SW620 cells less firmly attached to
the chamber slide, and the boundaries of each cell were more
distinct. Cells tended to grow in a columnar fashion rather than
a cobblestone pattern. Lamellipodia were shorter than in the
other two cell lines. Thus, these three cell lines demonstrated
different morphologies in 2D culture.

ANTICANCER RESEARCH 41: 4259-4269 (2021)

4260



Next, cells were cultured in 3D in the sponge. After
fixation, the cultured cells were embedded and sectioned
together with the sponge for morphological examination.
HCT116, DLD-1, and SW620 cells proliferated and formed
a congregated 3D structure in the sponge (Figure 1B).
HCT116 cells tended to form smaller structures than the other

cell lines and tended to migrate through the pores of the
sponge as they proliferated. HCT116 is a poorly differentiated
carcinoma cell line (21) and displayed fewer lumen-like
structures. DLD-1 cells formed the largest structures with
tight cell-to-cell adhesion. SW620 cells also formed larger
structures and additionally displayed more dispersed and
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Figure 1. Characteristics of HCT116, DLD-1, and SW620 colorectal cancer cells in 2D and 3D culture. A: Morphology of 2D-cultured cells observed
under phase-contrast microscopy. B: Morphology of 3D-cultured cells. Cells were stained with hematoxylin and eosin. The gelatin sponge was also
stained. C: Gelatin zymography. The activities of matrix metalloproteinase 2 (MMP2) (64 kDa) and proMMP9 (92 kDa) were demonstrated. SW1736
human undifferentiated thyroid carcinoma cells as a control, produced proMMP2 (72 kDa) and MMP9 (82 kDa).



scattered cell areas where each cell was attached to the
sponge independently.

Colorectal cancer is highly invasive in human tissue. Of
the more than 20 MMPs that have been characterized to date,
the gelatinases MMP2 and MMP9 are of particular interest
for their contributions to cancer invasion and metastasis (22).
To confirm if there were differences in affinity or ability of
degradation of the anchorage substrate, the gelatin sponge,
the activities of MMP2 and MMP9 of these cell lines were
compared. Gelatin zymography was used to determine the
differences in cell reactivity to gelatin. The results
demonstrated that the activities of the active form of MMP2
(64 kDa) in HCT116, DLD-1 and SW620 cells were similar
to those of proMMP9 (92 kDa), and no difference was
observed among these cell lines (Figure 1C).

To investigate how these cells behave in the sponge, 3D-
cultured cells were observed under SEM. Each HCT116 cell
was recognizable as an individual even after forming an
aggregated structure. Each cell was spherical and had
relatively distinct boundaries. They were tightly attached to
the sponge and possessed the most developed microvilli
among the three cell lines. These prominent microvilli filled
intercellular spaces, and some cells adhered to each other as
if they had been integrated (Figure 2A).

Unlike HCT116, DLD-1 cells formed larger clusters;
when aggregated, the boundaries between cells were less
distinct. Cell-to-cell adhesion was the strongest among the
cell lines. DLD-1 cells also demonstrated tight attachment to
the sponge (Figure 2B).

SW620 formed large spherical structures similarly to
HCT116 cells. However, they had the most well-marked cell
boundaries (Figure 2C). This might be attributable to weak
cell-to-cell adhesion, as observed in Figure 1C, and many
single cells directly attached to the sponge without forming
aggregates (Figure 2C, bottom right). The microvilli were
shorter and fewer than in HCT116 cells.

The sponge was supplied by the manufacturer, and the
detailed components and manufacturing process have not
been clarified. To confirm whether the 3D culture method
could be applied to various morphological studies, ultra-
microtome sectioning was performed, and the images of
these cells were observed under TEM. Accordingly, the
morphology of the cells and cell-to-cell adhesion and cell-
to-scaffold attachment were evaluated in 3D-cultured cells.

HCT116 cells adhered to neighboring cells with a round
cell body (Figure 3A, left). The result was consistent with
SEM observations shown in Figure 2A. Cells attached to the
sponge surface using microvilli like an octopus leg (Figure
3A, right).

In contrast, DLD-1 cells did not demonstrate a round cell
body when cells aggregated. Their structure was rather
trabecular (Figure 3B, left). Cells were directly attached to
the sponge via a cell body (Figure 3B, right).

In SW620 cells, cell-to-cell and cell-to-scaffold attachment
were similar to those of HCT116. However, the adhesions
were tighter and denser than in HCT116 cells (Figure 3C).

To demonstrate if it were possible to apply immunohisto-
chemical studies to 3D culture, HCT116 cells were stained with
an antibody to CRHR1 followed by a commercially available
ABC kit. CRHR1 is a receptor for CRH or corticotropin-
releasing factor and urocortin, and these molecules are
associated with stress responses in the human body. The
transcription of CRHR1 in HCT116 colon cancer cells was
reported previously (23). CRHR1 expression was demonstrated
in both 2D and 3D cultures. The antigen localized evenly in the
cells. In 2D culture, the antigen tended to be more expressed in
small round cells which were less adherent to surrounding cells
(Figure 4A, left). Because these round cells were less frequent
in 3D culture, the antigen was underexpressed in the 3D culture
(Figure 4A, right). In these figures, cells were not
counterstained to clarify the localization of the antigen.

The advantage of 3D culture is that cell-to-cell adhesion
and cell-to-scaffold attachment can be simultaneously
observed in a single section. Because a cultured structure in
this way was used for immunohistochemical examination,
phosphorylated YAP expression as an example of protein
relating to cell contact and density was next compared.

YAP localization is regulated by cell contact and density.
At low cell densities, YAP is mainly localized in the cell
nucleus. In contrast, at high densities, YAP is phosphorylated
and translocated to the cytoplasm (24). In 2D culture,
phosphorylated YAP was localized intracellularly to a similar
extent to CRHR1 and demonstrated no significant localization
in the aggregated structure (Figure 4B, left). In contrast, in
3D culture, a relatively high-density aggregated structure was
formed, and phosphorylated YAP was intensely observed at
the site of attachment of cells to the sponge (Figure 4B,
right). This was confirmed by the TEM of these sections
(Figure 4C).

Discussion

The possibility of 3D culture of colorectal cancer cells in an
existing material (gelatin sponge) was explored, and the
characteristics of different cell lines in the 3D culture were
observed. Because the anchorage support used in this study
consisted of a matrix of water-insoluble and malleable gelatin
and can provide space for cell proliferation and migration, it
was possible to compared the morphology of these cell lines
simultaneously, such as the resulting shapes of the structure,
cell-to-cell adhesion, and cell-to-scaffold attachment.

Generally, the 3D culture of colorectal cancer cells is
performed for several purposes, including studies for
biological behavior, immunological considerations, signal
transduction and gene expression, angiogenesis, drug
resistance, and cancer stem cell research.
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Biological behavior. 3D Culture provides insights to cancer
structure and the understanding of homeostasis, cellular
differentiation, and tissue organization in contrast to the complex

host environment of an in vivo model (25-27). It does not require
much explanation at this point. It is also useful for studying how
the tumor environment regulates colon cancer (28).
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Figure 2. Cells cultured in 3D as observed under scanning electron microscopy at low (left) and high (right) magnification. A: HCT116 cells. B:
DLD-1 cells. C: SW620 cells. Many single cells were directly attached to the anchorage support without forming aggregates (bottom right).



Immunological considerations. Much like in the human
body, human cancer cells in 3D culture display defective
immune recognition by cytotoxic T-lymphocytes, resulting
in reduced cytotoxic T-lymphocyte proliferation and
dendritic cell functions. Down-regulation of human
leukocyte antigen and high production of lactic acid were
attributable to the elicitation of these effects (29). 3D Culture
revealed how chronic inflammation drives colorectal cancer
development by analyzing the crosstalk between cells
participating in immunity and colon cancer cells (30).

Signal transduction and gene expression. The patterns of
signal transduction are known to differ significantly between

cells in 2D and 3D cultures (31, 32). This is also applicable
to colon cancer cells. The 3D culture of colorectal cells,
including SW620, HCT116, and DLD-1, demonstrated lower
activities in the AKT–mammalian target of rapamycin–S6K
signaling pathway with spatial alterations. The level of
phosphorylated RPS6 decreased from the cultured spheroid
surface toward the center. Inhibition of the signaling pathway
reduced extracellular-signal-regulated kinase (ERK)
signaling, and mitogen-activated protein kinase kinase 1
(MEK1) inhibition reduced the signaling pathway in 3D but
not in 2D cultures (33). MicroRNAs have also been studied
in the 3D culture, and miR-101 was found to be associated
with hypoxic survival and invasion of colorectal cancer
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Figure 3. Cell-to-cell adhesion (left) and cell-to-scaffold attachment (right) of colorectal cancer cells cultured in 3D as observed under transmission
electron microscopy. Bars and magnifications: left 10.0 μm, ×1,000; right 2.0 μm, ×3,000. A: HCT116 cells. B: DLD-1 cells. C: SW620 cells.



through the WNT/β-catenin signal pathway and epithelial-
to-mesenchymal transition (EMT) (34). For gene expression,
when colon cancer cells were co-3D cultured with

fibroblasts, they displayed a distinct gene expression profile
and a subsequent pathway involved in invasion, ECM
remodeling, inflammation, and angiogenesis (35).
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Figure 4. Immunohistochemical staining of HCT116 cells in 2D and 3D culture. A: Expression of corticotropin-releasing hormone receptor 1. B:
Expression of phosphorylated yes-associated protein. C: transmission electron microscopy observation of immunohistochemically stained sections;
bars and magnification: 2.0 μm, ×3,000.



Angiogenesis. The angiogenic characteristics of tumor cells
were dramatically altered in 3D culture (36). Integrin exerts
angiogenetic characteristics by enhancement of interleukin-
8 (37). HCT116 cells were shown to express endothelial
markers and formed tube-like structures in 3D culture with
an endothelial-inducing conditioned medium. HCT116 cells
secreted more endogenous vascular endothelial growth factor
and expressed higher vascular endothelial growth factor
receptor 2 under hypoxia (21).

Drug resistance. It has long been known that resistance to
anticancer drugs differs between cells in 2D and 3D cultures.
Attempts have been made to measure drug sensitivity in
colon cancer cells in 3D culture (38, 39). Currently, many
assays are available, and mechanisms, such as the
involvement of p53 in cisplatin resistance (40), acquisition
of resistance, and hypoxic stem cell characteristics have been
investigated (41). 3D Cell structures generally exhibit greater
resistance to anticancer drugs than 2D cultures. However, the
response to drugs and differences in each experiment are
dependent on cell lines and platforms used (42-44).

Cancer stem cell research. Tumorigenic cancer stem cells are
present in various types of cancer. In the colon, they are
present as a rare undifferentiated population of CD133+ cells
and account for 2.5% of the tumor cells. The subcutaneous
injection of these cells in immunodeficient mice reproduced
the original tumor, and such cells can be grown
exponentially for more than 1 year in vitro as
undifferentiated tumor spheres in a serum-free medium (45-
55). Methods for the isolation and culture of colon cancer
stem cells have progressed (46-48) and have been applied in
studies of cell death, chemoresistance, and tumor genericity
(49, 50). 3D Cultures are utilized to isolate and expand
various ranges of circulating cancer cells from body fluids,
such as ascites, pleural fluids, and circulating blood. Tumor-
derived 3D spheroids are unique because they are purposed
for the enrichment of cancer stem cells or cells with stem
cell-related characteristics (51).

Thus, 3D culture has become an indispensable tool for
colorectal cancer research. MCTs, first described in the early
1970s cultured under nonadherent conditions to an anchorage
support, are a symbolic example of 3D culture. Cell-to-cell
contacts of cancer cells are maintained throughout the
process of culture, and more than half of all 3D cultures
reported fall in the spherical category.

Ovarian cancer cells proliferate and form multicellular
spheroids within the ascites of patients. These aggregates
cause further invasion or metastasis in organs, vessels, and
peritoneum in the abdominal cavity. Therefore, 3D MCTs
are, to a certain extent, an in vivo model of such cancers
(52). This is also true for colorectal cancer. However, it is
also known that cell subpopulations of colorectal cancer cell

lines with loss of cell-to-cell adhesion (SW620 cells lack E-
cadherin, DLD-1 cells have lost α-catenin, and HCT116 cells
lack P-cadherin in the non-spheroid-forming state)
demonstrated increased migration and invasion (53).
Therefore, studies solely on anchorage-independent culture
might be insufficient. Even for popular spheroid culture,
anchorage is important; for this reason, materials, such as
laminin-rich ECM, have been used for phenotype, gene
expression, and epidermal growth factor receptor signaling
pathway experiments in colorectal cancer (54).

Degradation of the basal lamina between cell-to-cell
attachments is necessary not only for migrating cells, such
as macrophages (55) or T-cells (56), but also for cancer cells
infiltrating into surrounding tissue. In situ MMP2 and MMP9
activity is required to disintegrate the major basal lamina
constituent gelatins, collagen types IV and V in such
processes (57). The gelatin sponge used here may have a role
as an anchorage support for this type of study.

One of the intrinsic limitations of anchorage-independent
culture is the lack of stroma, blood vessels, and immune cells
(58). In the case of invasion or metastasis by ovarian
multicellular spheroids to the peritoneum in the abdominal
cavity, omental mesothelial cells inhibited the early steps of
ovarian cancer metastasis, whereas omental fibroblasts and
the ECM enhanced the attachment and invasion of cells to the
omentum (59). For colorectal cancer, when HCT116 cells
were co-cultured with fibroblasts, metastatic adhesion
molecules (such as β1-integrin and intercellular adhesion
molecule 1), transforming growth factor-β signaling
molecules (such as transforming growth factor-β3 and p-
SMAD2), proliferation-associated proteins (such as cyclin D1
and Ki-67), and EMT transition factors (such as vimentin)
were up-regulated, and the high-density microenvironment
synergistically increased tumor-promoting factors, cancer
stem cell survival, and EMT factors (60). Neighboring cells
also affect the gene expression of cancer cells (61).
Anchorage-dependent cultures, including the system used
here, can provide such platforms for a co-culture system.

More complex systems have been developed in areas of
research other than cancer, such as the 3D system for human
liver function (62), and an in vitro small intestine model that
reproduces the mechanism of drug absorption (63, 64). In
colorectal cancer, the further development of 3D cultures is
required to simulate and allow us to understand in vivo cell
behavior in such complex systems. Because the gelatin
sponge used here is easily applicable for the morphological
studies of colorectal cancer, this system may provide a
further choice of a support in anchorage-dependent 3D
culture.
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