
Abstract. Background/Aim: We aimed to investigate the role
of radiogenomic and deep learning approaches in predicting
the KRAS mutation status of a tumor using radiotherapy
planning computed tomography (CT) images in patients with
locally advanced rectal cancer. Patients and Methods: After
surgical resection, 30 (27.3%) of 110 patients were found to
carry a KRAS mutation. For the radiogenomic model, a total
of 378 texture features were extracted from the boost clinical
target volume (CTV) in the radiotherapy planning CT images.
For the deep learning model, we constructed a simple deep
learning network that received a three-dimensional input from
the CTV. Results: The predictive ability of the radiogenomic
score model revealed an AUC of 0.73 for KRAS mutation,
whereas the deep learning model demonstrated worse
performance, with an AUC of 0.63. Conclusion: The
radiogenomic score model was a more feasible approach to
predict KRAS status than the deep learning model. 

In colorectal cancer, several genomic biomarkers are being
used as prognostic or predictive tools. According to the
National Comprehensive Cancer Network guideline, patients
with metastatic colorectal cancer are recommended to undergo
tumor genotyping for several mutations, one of which is
KRAS mutation, which is involved in early colorectal cancer
development (1). In particular, patients with KRAS mutation
have poor response to cetuximab (1) or panitumumab (2);

therefore, these treatment modalities are not recommended for
patients with KRAS mutation. Identification of this genomic
profile requires a tumor specimen obtained by invasive
surgery and a qualified clinical laboratory. However, less
invasive watch and wait strategies or local excision have been
the options for complete or good responders to preoperative
treatment. In such cases, appropriate and qualified genomic
testing is unlikely performed. Therefore, noninvasive
identification of a patient’s tumor characteristics before
treatment would be useful.

The radiogenomic approach can be used to reveal tumor
characteristics noninvasively by extracting several texture
features from the region of interest (ROI) in medical images.
This method has been evaluated to predict genotype or
phenotype in breast cancer (3), renal cell carcinoma (4), glioma
(5), and advanced or metastatic solid tumors treated with
immunotherapy (6). In colorectal cancer, several studies have
investigated the radiogenomic approach with various imaging
modalities to predict KRAS mutation (7-10), prognosis (11),
and treatment response (12-14). Most imaging modalities of
those studies were rectal MRI or PET for accurate tumor
segmentation. Nevertheless, the computed tomography (CT)
images radiation therapy (RT) planning in patients with locally
advanced rectal cancer can be used for the radiogenomic
approach. In addition to the radiogenomic approach, the deep
learning method can be used to predict tumor phenotype. Deep
learning is a network structure in which several data processing
structures are layered (15). The convolutional neural network
(CNN) is a famous deep learning structure in oncology because
of its promising results in terms of medical image classification
and decision support. In colorectal cancer, a deep learning
method using the CNN structure has been applied to predict
KRAS mutation (16, 17); however, these two studies required
manual tumor segmentation from the CT images. Given that
the CNN imitates human visual cortex, in general, we
hypothesized that medical images could be analyzed by a deep
learning method without ROI segmentation.

Patients with locally advanced rectal cancer receive
neoadjuvant concurrent chemoradiation therapy (CCRT). For
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radiotherapy, a radiation oncologist delineates the clinical
target volume (CTV) for irradiation to the risk areas, which
include the gross tumor with margin, mesorectum, presacral
nodes, and internal iliac nodes. After irradiation with 45-50
Gy in 25-28 fractions to the pelvic area, an additional 5.4-
9.0 Gy in 3-5 fractions is prescribed as tumor boost RT. The
boost CTV is relatively small in order to reduce the toxicities
to the other pelvic organs. Given that the boost CTV
represents the gross tumor and mesorectum, we hypothesized
that genomic information could be derived using the
radiogenomic approach. Without a separate handcrafted
tumor segmentation process, the boost CTV itself can be
used to extract radiomic features and for RT planning.

Collectively, we aimed to evaluate both the radiogenomic
and deep learning approaches to predict KRAS mutation in
patients with locally advanced rectal cancer using the boost
CTV in the radiotherapy planning CT.

Patients and Methods

This study was approved by the ethics committee and institutional
review board (IRB) of Seoul National University Bundang Hospital
(IRB No. B-2101-663-103). The ethics committee and IRB that
approved this study waived the need for informed consent.

Study population, image, and ROI. We collected data from patients with
locally advanced rectal cancer and who were eligible for neoadjuvant
CCRT between January 2017 and October 2020. Specifically, patients
≥20 years old who were diagnosed with rectal cancer based on biopsy
sample and who completed neoadjuvant CCRT and total mesorectal
excision were included. Patients with evidence of distant metastases or
concurrent malignancy on pretreatment workup were excluded from this
study. After completing neoadjuvant CCRT, patients having available
surgical specimen were included. Patients without pathology reports or
molecular profile including KRAS status were excluded. When a patient
had pathologically complete response, we collect molecular profile from
the biopsy sample. For the radiotherapy, planning CT was acquired for
all patients. Intensity-modulated radiation therapy (IMRT) or 3D
radiotherapy was performed on supine or prone position with full
bladder, respectively. The CT slice thickness was 3-4 mm, and a contrast
material was routinely used. Two radiation oncologists delineated the
boost volume for the reduced field (RF) plan for three-dimensional (3D)
RT with a total dose of 50.4 Gy in 28 fractions or for the Simultaneous
integrated boost (SIB) plan for IMRT with a total dose of 52.5 Gy in 25
fractions. For radiomic feature extraction, the ROI was the boost CTV,
which included the primary tumor, the high-risk areas in the
mesorectum, and lateral lymph nodes (≤2).

KRAS mutation status. All patients underwent surgical resection. To
investigate the mutational status of the KRAS gene, pyrosequencing
analysis using PyroMark Q24 Mdx platform was performed on the
target regions exon 2 and exon 3 (codons 12, 13, and 61). When one
of these regions was mutated, we defined the tumor as KRAS
mutated. When the institutional panel sequencing was performed,
KRAS mutation status was defined as Tire I or II (18) single
nucleotide variation or indel disruption of the KRAS gene with allele
frequency of ≥2% and depth of ≥100%.

Extraction and selection of radiogenomic features. Radiomic
features were extracted using the Computational Environment for
Radiological Research (CERR) (19), which is an open source
software based on the MATLAB software (MathWorks Inc., Natick,
MA, USA) platform. The CERR extracted features and calculated
scalar values according to the image biomarker standardization
initiative guideline (20).

The first order statistics, peak/valley, shape, intensity volume
histogram, and the higher order features of the ROI were extracted.
For the first order statistics, the following features were extracted:
min, max, 10th percentile, 90th percentile, median, mean, range,
variance, standard deviation, skewness, kurtosis, energy, total energy,
root mean square, mean absolute deviation, robust mean absolute
deviation, robust median absolute deviation, interquartile range,
quartile coefficient of dispersion, coefficient of variation, and entropy
with a bin width parameter of 25. The higher order features included
the Gray Level Co-occurrence Matrix (GLCM), gray level run length
matrix, the Grey-Level Zone Length Matrix (GLZLM), neighborhood
gray tone difference matrix, and neighborhood gray level dependence
matrix. These 3D calculation results were reduced into scalar features
for each directional offset. Then, the mean, max, and standard
deviations were calculated from these scalar values. Among the
radiomic features, the shape feature was not calculated, because the
CTV, which was the ROI, was relatively circular and had a
homogeneous shape among patients.

The first order statistics, peak/valley, shape, intensity volume
histogram, and the higher order features were calculated from both
the original and filtered CT images, which were resized to
0.1×0.1×0.1 cm3 voxels by the linear interpolation method. Then,
the Hounsfield unit values were resampled into 400 discrete bin
widths. The filtered images were obtained by 3D wavelet filtering
(21). The Haar and Coiflets filtering types were used for
normalization. The original CT images were decomposed by all
directional high pass filtering.

In total, 378 features were calculated in each patient. To select
the features that were significantly related with the genomic profile,
we adopted the Lasso regression method. For each lambda in the
grid, nonzero coefficients were estimated. From those lambda
values, the optimal lambda was selected by 10-fold cross validation
method. If the optimal lambda indicated no nonzero coefficients, the
next lambda value was selected. Thereafter, the radiogenomic score
was calculated by linearly combining the selected features with their
nonzero coefficients. The Lasso analysis for model selection and
prediction was performed using STATA 16 statistical software
(StataCorp, College Station, TX, USA).

Deep learning network. We constructed a simple 3D classification
deep learning network (VoxNet), as suggested by a previous study
(22). Three 3D-CNN layers and three leaky ReLu layers were
arranged alternately, followed by arrangement of the max pooling,
fully connected, and ReLu layers. Finally, the dropout and
classification layers were located in order to classify the KRAS
status (wild type or mutated). Details of the network structure and
the parameters are provided in Table I.

After determining the bounding box around the ROI, the relevant
volume was cropped. The non-ROI region within the box was set
to be zero. Thereafter, the box was resized to 160×160×80 pixels,
which was the input data for the VoxNet. The network was trained
using the rmsprop optimizer with a fixed learning rate of 1e-4. The
epoch size was determined until the best results came out. Training
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was performed using the MATLAB software in an NVIDIA GeFore
1080Ti GPU system. We trained and tested the network model for
the KRAS mutation status; positive cases were defined as KRAS
mutation. To evaluate model performance, 10-fold cross validation
was adopted for KRAS mutation.

Evaluation of the radiogenomic score and deep learning network
model. After generation of radiogenomic score, a logistic model
was established to estimate the probability of KRAS mutation. The
receiver operating characteristic (ROC) curve and the
corresponding area under the curve (AUC) were calculated in the
same study population because we already performed 10-fold
validation to determine optimal delta value for the Lasso
regression analysis.

To evaluate the deep learning network, we performed 10-fold
validation for KRAS mutation prediction, then the mean AUC value
was calculated.

Results

Characteristics. The patient characteristics are described in
Table II. For the entire cohort, the median age was 61 years
(range=33-92 years). Most patients had clinical T3 (N=70,
63.6%) or T4 (N=33, 30%) disease and clinical N1 (N=65,
59.1%) or N2 (N=24, 21.8%) disease. For CCRT, patients were
treated with 3D radiotherapy or IMRT, depending on the
radiation oncologist’s discretion; therefore, the ROI was derived
from the 3D plan (N=78, 70.9%) and the IMRT plan (N=32,
29.1%), respectively. After surgical resection, 80 (72.7%) and
30 (27.3%) patients were found to have KRAS-mutated and
wild-type rectal tumors, respectively. 

Two approaches for KRAS mutation prediction. The
radiogenomic and deep learning approaches that we adopted to
predict KRAS status are shown in Figure 1. In the radiogenomic
approach, the ROI was segmented from the RT planning CT

then was progressed into texture analysis, which used the
original and filtered images derived from wavelet transform by
Haralick and Coiflets descriptors. The estimated features were
subjected to least absolute shrinkage and selection operator
(Lasso) regression analysis in terms of the KRAS status. In the
deep learning approach, the ROI was reconstructed into a 3D
volume, which was input for the simple VoxNet deep learning
network. Details of the layer, parameter, and optimization
process are described in the Methods section.
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Table I. Detail deep learning network structure and parameters.

Layers                                                     Dimension                                                                                       Parameters

3-D Image Input                                 160×160×80×1                                                     160×160×80×1 The Region of Interest Volume
Convolution                                         39×39×19×32                                   32 8×8×8×1 Convolutions with Stride: [4 4 4]; Padding [0 0 0; 0 0 0]
Leaky ReLU                                        39×39×19×32                                                                                      Scale 0.1
Convolution                                          18×18×8×32                                   32 4×4×4×32 Convolutions with Stride: [2 2 2]; Padding [0 0 0; 0 0 0]
Leaky ReLU                                         18×18×8×32                                                                                       Scale 0.1
Convolution                                          17×17×7×32                                   32 2×2×2×32 Convolutions with Stride: [1 1 1]; Padding [0 0 0; 0 0 0]
Leaky ReLU                                         17×17×7×32                                                                                       Scale 0.1
3-D Max Pooling                                    8×8×3×32                                          2×2×2 Max pooling with Stride [2 2 2] and Pading [0 0 0 ; 0 0 0]
Fully Connected                                    1×1×1×400                                                                              400 Fully connected
ReLU                                                      1×1×1×400                                                                                               
Drop Out                                                1×1×1×400                                                                                     50% dropout
Fully Connected                                       1×1×1×2                                                                              2 Fully connected layer
Softmax                                                    1×1×1×2                                                                                                 
Classification Output                                                                                                                                    Cross entropy

Table II. Patient characteristics.

Age                                                                                     63 (33-92)
Gender                                                                                         
   Male                                                                                74 (67.3%)
   Female                                                                            36 (32.7%)
Clinical T stage                                                                          
   2                                                                                        7 (6.4%)
   3                                                                                      70 (63.6%)
   4                                                                                      33 (30.0%)
Clinical N stage                                                                          
   0                                                                                      19 (17.3%)
   1                                                                                      65 (59.1%)
   2                                                                                      24 (21.8%)
   3                                                                                        2 (1.8%)
ROI                                                                                              
   From the RF of the 3D plan                                          78 (70.9%)
   From the SIB boost of the IMRT plan                         32 (29.1%)
KRAS status                                                                                
   Wild type                                                                        80 (72.7%)
   Mutated                                                                           30 (27.3%)
NRAS status                                                                                
   Wild type                                                                       105 (95.5%)
   Mutated                                                                             5 (4.5%)
Total                                                                                 110 (100.0%)

ROI: Region of interest; RF: reduced field; 3D: three-dimensional; SIB:
simultaneous integrated boost; IMRT: intensity-modulated radiation therapy.



Generation and evaluation of the radiogenomic score and
deep learning model. We extracted 378 radiogenomic features
from original and filtered images. Lasso regression analyses
selected four features with nonzero coefficients for KRAS. The
correlations of these features with the KRAS mutation are
depicted in a heat map (Figure 2A). The gray level co-
occurrence matrix (GLCM) Haralick Correlation from the
original image (Figure 2B) did not differ between the KRAS-
mutated and wild type tumors. However, higher skewness and
peak/valley derived from the wavelets (Haar) showed a trend
of associations with KRAS-mutated status (Figure 2C, p=0.061
and Figure 2D, p=0.069, respectively). The coefficient of
variation from wavelets (Coif1) was not different between the
KRAS-mutated and wild-type tumors (Figure 2E, p=0.130).
Therefore, the KRAS radiogenomic score was generated using
the best tuning parameters (λ=0.0661311), as follows:

The KRAS radiogenomic score=
GLCM Haralick Correlation from 
Original image × 0.0028595 + 
Skewness from Wavelets (Haar) × –3.26196 + 
Peak/Valley from Wavelets (Haar) × –0.4913127 + 
Coeff Variation from Wavelets 
(Coif1) × 0.0000662 - 0.53702 (1)

To evaluate the performance of the radiogenomic score,
we used the ROC curve analysis and calculated AUC. The
radiogenomic scores for KRAS showed an AUC of 0.730
(95%CI=0.637-0.810) (Figure 3A). Then, we identified the
cutoff value for the minimal false negative and false positive
values. For the KRAS radiogenomic score, the best cutoff
value was −0.5462, with a sensitivity of 56.7% and a
specificity of 85.0% (Figure 3B). On the other hand, the
performance of the deep learning model was evaluated by an
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Figure 1. Summarized schema of the two approaches used in this study. (A) This is an example of the ROI (pink line) that the radiation oncologist
delineated as the boost CTV in the RT planning CT. (B) The segmented ROI is processed for the radiogenomic or deep learning approach. Lasso:
Least absolute shrinkage and selection operator; 3D: 3-dimensional.
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Figure 2. Relationship between radiogenomic features and KRAS status. (A) The heat map represents the relationships of the features with nonzero
coefficients with KRAS status. The raw value of each feature is normalized by centering and scaling. Each feature was compared with the KRAS
mutation status (B-E). p-Value was estimated by the Wilcoxon test. Mut: Mutated; Coeff variation: coefficient of variation.

Figure 3. The performance of the radiogenomic approach. For the KRAS radiogenomic score, (A) the receiver operating characteristics (ROC)
curve and (B) the interactive dot diagram to determine the optimal cutoff value were drawn. (C) Performance of the deep learning model is depicted
by AUC curves with 10-fold validation. p-Value is estimated by the Wilcoxon test. AUC: Area under the ROC curve; Mut: mutated.



internal validation method, resulting in a mean AUC of 0.63
for KRAS mutation (Figure 3C). 

Discussion

We showed that the radiogenomic features extracted from the
boost CTV in the radiotherapy planning CT images could
predict the KRAS status in patients with locally advanced rectal
cancer. Moreover, we showed that the radiogenomic model
demonstrated better performance than the deep learning model.

In colorectal cancer, KRAS mutations have been associated
with poor response to EGFR tyrosine kinase inhibitor (1, 2, 23),
and have a reported the incidence as approximately 40% (24).
This genomic feature is routinely investigated using surgical
specimens from patients who have received CCRT for locally
advanced rectal cancer. However, tumor response to CCRT can
vary, with a reported pathologic complete response rate of 15%
to 27% (25, 26). In these cases, pretreatment imaging
biomarkers may have a role in predicting genomic profile.

Some of the published radiomics studies on colorectal cancer
mainly focused on chemoradiation response (12-14) or the
related prognostic factors (11), and only a small number of
studies performed their investigation on CT imaging modality.
Yang et al. (9) developed a support vector machine (SVM)
model based on 346 radiomic features derived from pretreatment
contrast-enhanced CT. This SVM model was developed to
differentiate between the three-gene mixed mutated group
(KRAS, NRAS, or BRAF) and the nonmutated group. Although
that model showed an AUC of 0.83 in the validation cohort
(N=56), it was used to predict a mixture of genetic mutations
rather than KRAS mutation alone. Meanwhile, our study
dedicated for classifying KRAS mutation, and  was based on the
largest and homogeneously treated rectal cancer population
(N=110) among radiogenomic studies using CT-images. 

The strength of our study is that there was no need for the
labor-intensive manual tumor segmentation, which has
commonly accompanied radiomics studies. Both studies by
Yang et al. (9) and Golia Pernicka et al. (27) were conducted
under the premise that rectal tumor segmentation should done
precisely. Manual segmentation requires experienced
radiologists and is inevitably vulnerable to observer variability.
Above all, the accuracy of segmentation of rectal tumors using
axial CT images is questionable, because most cases of early
and locally advanced rectal tumor are assessed by high-
resolution MRI (28, 29). In this study, we used the ROI from
the radiotherapy boost target. Owing to its high response rate
and reduced toxicity, the boost technique is frequently used in
neoadjuvant CCRT (30). Radiation oncologists have defined the
boost CTV as the high risk area, including the gross tumor
volume and mesorectal bed (31, 32), which represents the tumor
burden. This delineation process is performed by radiation
oncologists for treating patients with locally advanced rectal
cancer that are eligible for preoperative CCRT. Therefore,

compared with the manual precise tumor segmentation by a
radiologist, the delineation process during RT planning is
relatively more cost effective.

In addition, we adopted the deep learning approach to predict
the genomic profile from the same ROI that was used for the
radiogenomic approach. Despite the use of optimized
parameters, the deep learning model showed worse performance,
compared with that of the radiogenomic approach. Recent
advances in the development of deep learning models depend on
the size of the dataset and the computing power that supports the
training of many network layers. Therefore, the relatively poor
performance of the deep learning approach in the current study
might have been related with the model structure, small number
of datasets, and less optimized hyperparameters. Wu et al. (17)
combined deep learning and handcrafted radiomics approaches
to predict KRAS mutation status from two-dimensional (2D) CT
images. The combined model achieved a C-index of 0.82 and
was superior to the radiomics model, which showed a C-index
of 0.79. He et al. (16) tested the performance of the ResNet
model with three different input dimensions from axial, coronal,
and sagittal 2D CT input images. In their test cohort (N=45), the
deep learning model showed AUCs of 0.90 for the axial images,
0.75 for the coronal images, and 0.72 for the sagittal images. In
general, the resolution of reconstructed coronal and sagittal
images was not as high as the resolution of axial images. This
may explain the limited performance of our deep learning model,
which used 3D images having information of coronal and
sagittal images. Moreover, the authors of that previous study
found that additional expansion of the ROI to include the
surrounding tissue may have contributed to the model
performance. This is aligned with the rationale of the current
study. Notably, both previous studies (16, 17) required separate
handcrafted tumor segmentation processing of 2D CT images.
Future large-scale research is needed to test the feasibility of the
deep learning approach for 3D reconstruction of an ROI.

There are concerns about the overfitting problem given the
complexity of deep learning model and the relatively small
dataset. Nevertheless, the deep learning model in the current
study has a shallow, simple, and tiny network structure albeit
the 3D-CNN model. Of a total of 14 layers, only 3 CNN layers
were fitted to our dataset, which is very simple given this is a
3D-CNN network. Rather than focusing on the result of the
CNN model, we aimed to benchmark radiogenomic model,
compared with a simple CNN model. This result will provide
many researchers with a hint for choosing appropriate strategy.
Specifically, this result will reduce the trial-and-error and will
help for making a reliable model when using CT images from
rectal cancer patients. Studying cancer patients in a single
institution commonly suffers from a small number of eligible
patients, particularly when developing machine learning or
deep learning model. In order for the model to be further
validated in other institutions, the source code has been
released at the publicly available repository (33).

ANTICANCER RESEARCH 41: 3969-3976 (2021)

3974



This study has several limitations. The developed models
were only tested internally, because the study population was
small. External validation using a large and multi-institutional
dataset is required. Nevertheless, the results of the present study
gave a hint on which is a feasible approach for a small dataset.

In conclusion, derivation of radiogenomic features from
the CTV in RT planning CT could be a feasible approach for
noninvasive prediction of KRAS status. Compared with the
deep learning network model, the radiogenomic score model
showed better performance. 
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