
Abstract. Background/Aim: Peroxiredoxin V (Prx V) plays
crucial roles in cellular apoptosis and proliferation in
various cancer cells by regulating the cellular reactive
oxygen species (ROS) levels. Materials and Methods: Here,
we examined the possible regulatory effects of Prx V on
doxorubicin (DOX)-induced cellular apoptosis and its
mechanisms in the human gastric adenocarcinoma cell line
(AGS cells). Results: Our findings suggest that Prx V
knockdown may significantly increase the DOX-induced
apoptosis by aggravating intracellular ROS accumulation.
We also found that DOX-induced mitochondrial ROS levels
and membrane permeability were significantly higher in
short hairpin Prx V cells than in mock cells, and these
phenomena were dramatically reversed by ROS scavenger
treatment. Prx V knockdown also significantly upregulated

the cleaved caspase 9, 3, and B-cell lymphoma 2 (Bcl2)-
associated agonist of cell death/Bcl2 protein expression
levels, suggesting that Prx V knockdown activates
mitochondria-dependent apoptotic signaling pathways.
Conclusion: Taken together, this study suggests that Prx V
may be a strong molecular target for gastric cancer (GC)
chemotherapy, and further elucidates the role of Prx V in
oxidative stress-induced cell apoptosis. 

Gastric cancer (GC) is a major health burden and the fifth
most common cancer worldwide (1). However, the lack of
clear molecular markers can lead to late diagnosis, resulting
in a loss of the optimal time for surgery. Currently,
traditional chemotherapy is regarded as the main treatment
for advanced GC, especially in developing countries (2, 3).
Chemotherapy has always been considered the best treatment
option for advanced and metastatic GC.

Doxorubicin hydrochloride (DOX) is an anthracycline
cytotoxic antibiotic, which is a broad-spectrum antineoplastic
drug (4). DOX can induce cell death through oxidative stress
(5, 6), energetic stress (7), and DNA damage (8) via the
accumulation of intracellular reactive oxygen species (ROS)
in several cancer cell types (6, 9). The administration of
DOX alone or in combination with cisplatin, fluorouracil, or
paclitaxel (10) is common in a variety of malignancy
treatments, including GC. However, the effective reduction
of DOX resistance or improvement in the tumor sensitivity
of DOX remains the most significant problem in the
treatment of GC.

Peroxiredoxin V (Prx V) is the fifth member of the Prx
family and also known as atypical 2-Cys-Prx (11, 12). It is the
smallest member of the family and exists in the cytoplasm,
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mitochondria, and peroxisomes. According to our previous
studies, Prx V plays crucial roles in oxidative stress-induced
cell apoptosis via regulating the cellular ROS levels and
mitochondrial signaling cascades in the colon, liver, lung, and
GC cells (13-15). It is also well known that Prx V serves as a
scavenging agent for ROS and reactive nitrogen species upon
inflammatory and oxidative damages in both tissues and
immune cells in vivo and in vitro (16, 17). Previous research
showed that Prx V may be a key molecule that plays a
regulatory role in the treatment of various cancers by regulating
intracellular ROS levels. When Prx V is overexpressed, it can
protect HT22 neuronal cells against the apoptosis induced by
glutamate induced Ca2+ and ROS increase (16, 18, 19).
However, silencing Prx V can increase the sensitivity of colon
cancer cells to ROS stimulation and promote cellular apoptosis
in SW480 cells (13). At the same time, we reported that Prx V
may also play a regulatory role in the emodin-induced AGS
cell apoptosis. The Prx V content in AGS cells directly affects
the proportion of emodin-induced AGS cell death via the
regulation of intracellular ROS levels (14). However, the
possible molecular and intracellular signaling mechanisms of
Prx V have not yet been understood in GC cell apoptosis upon
anticancer drug therapy, such as DOX. 

In the present study, we used AGS cells [the human gastric
adenocarcinoma cell line CRL-1739 from the American Type
Culture Collection (ATCC)] and constructed mock and short
hairpin (sh)RNA Prx V stable cell lines in order to
understand the role of Prx V in DOX-induced cell apoptosis.
Cellular apoptosis, ROS levels, mitochondrial membrane
potentials, and apoptosis-related protein expression levels
were measured in these two modified AGS cells after
treatment with DOX. Our results provide novel insights for
understanding the function of Prx V in GC treatment. 

Materials and Methods

Cell culture and media. AGS human gastric adenocarcinoma cells
were obtained from the ATCC (Manassas, VA, USA). AGS cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco, Waltham, MA, USA) containing 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin (Solarbio Life Science,
Beijing, PR China), at 37˚C in a humidified incubator with 5% CO2.

DOX and N-acetyl cysteine (NAC) treatment. DOX was purchased
from Sigma-Aldrich (St. Louis, MO, USA) and applied to AGS cells
at the indicated concentrations (0, 0.5, 1, 2 and 4 μM) for 24 h. In
the NAC pre-treatment group, we added 5 mM of NAC into the
culture medium before DOX treatment for 30 min, followed by co-
treatment with DOX for 24 h.

Construction of stable Prx V knockdown AGS cells. ShRNA specific
to Prx V (shPrx V LV3, H1-Puromycin) and control shRNA LV3
(H1-Puromycin) lentivirus vectors were purchased from Shanghai
GenePharma Co., Ltd. (Shanghai, China). The targeted sequence of
shPrx V was 5’-GGAATCGACGTCTCAAGAGGT-3’, and the

targeted sequence of the negative control was 5’-GTTCTCCGAAC
GTGTCACGT-3’. We seeded 1×104 AGS cells/well in a 6-well cell
culture plate (NEST Biotechnology, Wuxi, China) for 24 h (37˚C
and 5% CO2) prior to transfection. The culture medium was
replaced with polybrene (0.5 μg/ml; Shanghai GenePharma Co.,
Ltd., Shanghai, PR China) containing lentivirus with a multiplicity
of infection of 50 (MOI=50) for 48 h and subsequently changed into
complete culture medium (DMEM with 10% FBS and antibiotics).
Infected cells were selected via treatment with puromycin. Western
blotting was used to analyze the expression levels of Prx I-VI
proteins 3 days after selection.

Western blot analysis. Cell proteins (20 μg), lysed using lysis buffer,
were separated on 12% sodium dodecyl sulfate polyacrylamide gels
and transferred onto nitrocellulose membranes (Millipore, Bedford,
MA, USA). The membranes were blotted with primary antibodies
against Prx I (#bsm-52127R; Bioss Biology, Beijing, PR China), Prx
II (#LF-MA0144; AbFrontier, Seoul, Republic of Korea), Prx III
(#sc-59661; Santa Cruz Biotechnology, Dallas, TX, USA), Prx IV
(#sc-376668; Santa Cruz Biotechnology), Prx V (#sc-133073; Santa
Cruz Biotechnology), Prx VI (#sc-134478; Santa Cruz
Biotechnology), Caspase 9 (#9505; Cell Signaling Technology,
Beverly, MA, USA), B-cell lymphoma 2 (Bcl2; #sc-7382; Santa
Cruz Biotechnology), Bcl2-associated agonist of cell death (Bad;
#bs-0892R; Bioss Biology), Caspase 3 (#9661; Cell Signaling
Technology), and β-actin (#ab7291l; Abcam, Cambridge, UK)
(dilutions of 1:2,000) at 4˚C for 6 h after being blocked with
skimmed milk for 1 h. The membranes were then washed five times
with 10 mM Tris-HCl (pH 7.5), containing 150 mM NaCl (tris-
buffered saline [TBS]) and 0.2% Tween 20, and subsequently
incubated with horseradish peroxidase-conjugated goat anti-rabbit
IgG (Sangon Biotech, Shanghai, PR China) or anti-mouse IgG
(Sangon Biotech) for 1 h at room temperature. After the removal of
excess antibodies by washing with TBS, specific binding was
detected using a chemiluminescence detection system (Amersham,
Berkshire, UK) according to the manufacturer’s instructions. The
data were analyzed in ImageJ and a histogram was generated using
the same software.

Cell viability assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay was used to examine cell
viability. The cells were inoculated at a density of 1×104 cells/well
in 96-well plates (NEST Biotechnology) and treated with DOX at
different doses for 24 h (37˚C and 5% CO2). The control cells were
treated with normal medium alone. The accumulation of formazan
(dissolved with dimethyl sulfoxide) was determined following the
addition of MTT reagent (0.5 mg/ml), and the absorbance was
measured at a wavelength of 490 nm. A UVmax kinetic microplate
reader (Molecular Devices, LLC, Sunnyvale, CA, USA) was used
to detect the absorbance.

Cell apoptosis assay. The cells were recycled using trypsin, re-
suspended in apoptosis stain buffer, and then stained with annexin
V-phycoerythrin (PE) according to the manufacturer’s protocol for
the apoptosis detection kit (Solarbio Life Science). The cells were
washed once with phosphate-buffered saline. Fluorescence
microscopy and flow cytometry analysis were used to check for
annexin V-PE-positive cells. The flow cytometry results were
analyzed with the WinMDI (version 2.9; BD Biosciences, San Jose,
CA, USA) software.
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Intracellular and mitochondrial ROS analysis. Dihydroethidium
(DHE; Beyotime Biotechnology, Shanghai, PR China) and
MitoSOX Red (Thermo Fisher Scientific, Waltham, MA, USA)
were used as fluorescent probes to indicate changes in intracellular
and mitochondrial ROS levels. The DOX-treated AGS and control
cells were collected, washed, and stained with DHE and MitoSOX.
Fluorescence microscopy and flow cytometry analysis were used to
measure the intracellular and mitochondrial ROS levels.

Mitochondrial membrane potential ability assay. The cell
mitochondrial membrane potential was detected using JC-1 dye
(Solarbio Life Science). DOX-treated and control AGS cells were
collected and stained with JC-1 dye. Fluorescence microscopy was
used to examine the JC-1-positive cells. 

Statistical analysis. Data from at least three independent experiments
are presented as mean±standard errors of the mean. A two-way
analysis of variance was used to analyze changes over time and
differences between groups in each experiment. For most
experiments, Tukey’s post hoc test (α=0.05) was used to determine
the statistical significance between two groups. All statistical analyses
were conducted using the SPSS Statistics software (version 25; IBM
SPSS, Armonk, NY, USA). Differences were considered statistically
significant if p<0.05 (*p<0.05, **p<0.01, and ***p<0.001).

Results

Knockdown of Prx V increases DOX-induced cell death in AGS
cells. In order to explore the regulatory mechanism of Prx V
in the process of DOX-induced AGS cell death, we constructed
Prx V gene-silenced (shRNA Prx V) and mock empty-vector
AGS cell lines with lentiviral vectors. Western blot analysis
showed that the lentiviral vector significantly reduced Prx V
protein expression level while having no effect on the
expression levels of other Prx family members in AGS cells
(Figure 1A and B). To determine the effect of Prx V on DOX-
induced cell death, the mock and shPrx V cells were treated
with various DOX concentrations (0, 0.5, 1, 2, 4 μM) for 24 h.
As shown in Figure 1C, knockdown of Prx V significantly
decreased the DOX-induced viability of AGS cells. 

Knockdown of Prx V increases DOX-induced apoptosis and
ROS accumulation in AGS cells. To analyze the effect of Prx
V on DOX-induced apoptosis, we performed apoptosis
detection analysis via staining with annexin V-PE, a marker
of apoptosis, and conducted flow cytometry and fluorescence
microscopy analyses of the mock and shPrx V AGS cell
lines. The results showed that DOX treatment significantly
increased cellular apoptosis in a dose- and time-dependent
manner both in mock and shPrx V AGS cells, and shPrx V
AGS cells showed more susceptibility to DOX stimulation
than mock cells (Figure 2A-D). Considering that the main
function of Prx V is to target ROS, we measured the ROS
levels in AGS cells after DOX treatment. As shown in Figure
2E and F, with increased DOX treatment concentrations, the
intracellular ROS accumulation was also significantly

elevated both in mock and shPrx V cells; however, shPrx V
cells were more strongly affected than the mock cells.

Knockdown of Prx V increases DOX-induced apoptosis via
mitochondria-dependent pathways. To further analyze the
relationship between Prx V and cell apoptosis, we detected the
ROS levels localized in mitochondria as well as the changes
in mitochondrial membrane potentials, with MitoSox (a
mitochondrial ROS detection dye) and JC-1 (a mitochondrial
membrane potential detection dye) staining using flow
cytometry and fluorescence microscopy analyses. Statistical
analysis of the flow cytometry results showed that knockdown
of Prx V markedly increased the mitochondrial ROS
accumulation upon DOX stimulation in AGS cells (Figure
3A). Statistical analysis of the mitochondrial membrane
potential results showed that Prx V silencing exacerbated the
DOX-induced loss of mitochondrial membrane potential in
AGS cells (Figure 3B). Analysis of proteins related to the
classical intrinsic apoptosis pathway revealed that DOX
treatment upregulated the pro-apoptotic proteins, such as
cleaved caspase 3 and 9, and the Bad/Bcl2 protein expression
ratio after DOX stimulation both in the mock and shPrx V
AGS cells; however, these changes were more significant in
shPrx V cells than in mock cells (Figure 3C-F). 

Anti-apoptotic function of Prx V relies on the cellular ROS
levels in AGS cells. To further confirm that DOX induces
AGS cell apoptosis by increasing the intracellular ROS
levels, we analyzed the ROS levels and mitochondrial
membrane potentials in AGS cells after pre-treatment with
ROS scavenger NAC and in combination with DOX
treatments. The results showed that the increased ROS
levels, which were induced by DOX treatment, declined after
NAC pre-treatment in both mock and shPrx V AGS cells
(Figure 4A). Simultaneously, the loss of mitochondrial
membrane potentials and cellular apoptosis were also
inhibited by NAC pre-treatment (Figure 4B-D), as observed
using fluorescence microscopy and flow cytometry analyses.
Furthermore, we also examined the effect of NAC treatment
on the DOX-induced apoptotic protein expression levels in
both mock and shPrx V AGS cells. As shown in Figure 5A-
D, DOX induced the upregulation of pro-apoptotic proteins,
such as cleaved caspase 3 and 9, and the Bad/Bcl2 protein
expression ratio, all of which were significantly reversed by
NAC treatment in both mock and shPrx V AGS cells. 

Discussion

In recent years, the use of ROS to induce cell apoptosis has
become a promising method for the treatment of malignant
tumors (20). ROS, as a kind of ion and free radical with
strong activity, is also a by-product of the normal
metabolism of organisms and plays an indispensable role in
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many physiological processes (21). A low level of ROS can
be used as a second messenger to regulate the migration,
adhesion, and homeostasis of normal cells in vivo (22),
whereas a high level of ROS exhibits cytotoxicity through
lipid peroxidation (23), unsaturated fatty acids in protein

amino acids, and other biological molecules (24), leading to
irreversible DNA damage (25) that ultimately results in cell
apoptosis or necrosis. It is widely known that redox states
between cancer cells and normal cells differ, and that
malignant tumor cells are more susceptible to exogenous
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Figure 1. Effect of DOX on the viability of AGS cells. (A) DOX construction. (B) Protein expression levels of Prx I-VI in control, mock, and shPrx
V AGS cells. (C) The viabilities of mock and shPrx V AGS cells after treatment with DOX. *p<0.05, **p<0.01, and ***p<0.001 versus control.
Data are presented as means; error bars indicate standard error of the mean of three different samples.
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Figure 2. Effects of DOX on the intracellular ROS levels and apoptosis. (A) Flow cytometry analysis. (B) Quantitative flow cytometry data. (C)
Annexin V-PE staining to observe the effects of DOX-induced apoptosis in a dose-dependent manner (scale bar=100 μm). (D) Quantitative data
from the flow cytometry analysis of DOX-induced apoptosis in a time-dependent manner. (E) DHE staining to observe the ROS levels (scale bar=100
μm). (F) Quantitative flow cytometry data. Data are presented as means; error bars indicate standard error of the mean of three different samples.
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Figure 3. DOX-induced AGS cell apoptosis via increased mitochondrial ROS levels. (A) Quantitative flow cytometry data. (B) MitoSOX staining to
observe the mitochondrial ROS level. (B) JC-1 staining to observe the mitochondrial membrane potential (scale bar=100 μm). (C) Western blot
analysis of the protein expression levels of the Bad/Bcl2 ratio as well as cleaved caspase 3 and 9 in mock and shPrx V AGS cells. (D-F) Quantitative
western blot analysis data. Data are presented as means; error bars indicate standard error of the mean of three different samples.



redox than normal cells (26). Therefore, interrupting the
intracellular ROS level balance is an effective way to induce
cell death in cancer cells.

Anthracyclines have been used in clinical therapy for
more than half a century (27, 28), and an increasing number
of chemotherapy regimens administer anthracycline alone
or in combination with non-anthracycline drugs to exert the

greatest anti-tumor effect, which is one of the significant
achievements in current tumor therapeutics (29, 30). While
some chemotherapy drugs have been gradually replaced by
targeted therapy in recent years, anthracyclines remain
difficult to replace in the status of tumor chemotherapy.
However, anthracyclines have obvious cardiotoxicity (31)
and present several toxic side effects that may be associated
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Figure 4. Effects of NAC pre-treatment on ROS levels and the mitochondrial membrane potential. (A) Quantitative flow cytometry data. (B) DHE
staining to observe the intracellular ROS levels (scale bar=100 μm). (C) MitoSOX staining to observe the mitochondrial ROS level. (D) JC-1
staining to observe the mitochondrial membrane potentials in the mock and shPrx V AGS cells treated with both NAC and DOX for 24 h. Data are
presented as means; error bars indicate standard error of the mean of three different samples.



with exposure level, which limits the acceptable dosage.
DOX, as an early-discovered anthracycline compound, was
isolated from a Streptomyces species (32). The cell death
induced by DOX may be due to a variety of factors, such as
proinflammatory cytokines, DNA damage, and bursts of
cellular ROS levels; oxidative stress is one of the
mainstream theories that explain its mechanism (33). When
a variety of harmful substances stimulate the internal
environment of the body, the body generates excess ROS,
which causes cells and tissues to undergo a series of
physiological and pathological reactions (34, 35). Such
reactions can destroy cell DNA, induce genetic mutations,
and lead to protein denaturation, thereby triggering cell
apoptosis (36, 37).

In the present study, we examined the possible regulatory
function of Prx V in DOX-induced cell apoptosis in AGS GC
cells, by constructing Prx V knockdown cell lines with
lentivirus. We found that Prx V knockdown significantly
increased the DOX-induced cell death and cellular ROS
levels (Figures 1 and 2). These results are similar to our
previous study, in which the deletion of Prx V elevated the
susceptibility to emodin stimulation in AGS cells by
increasing the cellular ROS accumulation (14). These
findings strongly suggest that Prx V plays a protective role
in GC cell apoptosis by attenuating the intracellular ROS
accumulation. Furthermore, upon scavenging the ROS with
NAC, both mock and shPrx V cellular ROS levels and
apoptosis were significantly inhibited (Figure 4A, 4C, and
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Figure 5. Effect of NAC pre-treatment on cell apoptosis. (A) Western blot analysis of the protein expression levels of the Bad/Bcl2 ratio as well as
cleaved caspase 3 and 9 in mock and shPrx V AGS cells. (B-D) Quantitative analysis of Bad/Bcl2 ratio as well as cleaved caspase 9 and 3 in mock
and shPrx V AGS cells. Data are presented as means; error bars indicate standard error of the mean of three different samples.



4D), suggesting the key role of ROS in the DOX-induced
AGS cell apoptosis regulated by Prx V. 

It is also widely known that mitochondrial dysfunction
is the primary mechanism for cellular apoptosis. Elevated
ROS can induce such dysfunction, thereby promoting cell
death in cancer cells. In our previous study, we observed
the regulatory role of Prx V in AGS cells via emodin
stimulation; however, we did not assess the effect of Prx V
on mitochondrial dysfunction (14). Therefore, in the
present study, we evaluated the effect of Prx V on DOX-
induced mitochondrial dysfunction in AGS cells. Our
results showed that knockdown of Prx V significantly
increased the DOX-induced mitochondrial membrane
permeability, which was dramatically reversed by ROS
scavenging (Figures 3A, 3B and 4B). These results indicate
that knockdown of Prx V enhances DOX-induced
mitochondrial ROS accumulation, which in turn increases
the mitochondrial membrane permeability. We also
examined mitochondria-dependent apoptosis-related protein
expression levels after DOX treatment in both mock and
shPrx V AGS cells. The results showed that knockdown of
Prx V significantly enhanced the mitochondria-dependent
cellular apoptosis upon DOX treatment, and these changes
were reversed by ROS scavenging (Figures 3 and 5). These
results strongly suggest that silencing of Prx V may
increase GC cell apoptosis via mitochondria-dependent
signaling pathways. 

Therefore, according to our research results, we
demonstrated that the effect of Prx V may depend on the
mitochondria-dependent pathways that are involved in signal
transduction by ROS, but the possible molecular mechanisms
should be further examined. This is consistent with our
previous study results of AGS treatment with emodin, which
also showed that reducing Prx V could enhance the sensitivity
of AGS cells to chemotherapeutics. Taken together, our
findings illustrate that Prx V knockdown increases the
accumulation of intracellular and mitochondrial ROS while it
upregulates GC cell sensitivity by promoting mitochondria-
dependent cellular apoptosis in DOX-treated AGS cells.
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