
Abstract. Haematology has been at the forefront of cancer
immunotherapy advancements. Allogeneic haematopoietic stem
cell transplant (allo-HSCT) is one of the earliest forms of
cancer immunotherapy and continues to cure thousands of
patients. Donor lymphocyte infusion (DLI) increases allo-
HSCT efficacy and reduces graft-versus-host disease (GVHD).
In recent years, chimeric antigen receptor (CAR)-T-cells have
been approved for the treatment of distinct haematologic
malignancies, producing durable response in otherwise
untreatable patients. New target antigen identification and
technological advances have enabled the structural and
functional evolution of CARs, broadening their applications.
Despite successes, adoptive T-cell (ATC) therapies are
expensive, can cause severe adverse reactions and their use is
restricted to few patients. This review considers the current
status and future perspectives of allogeneic transplant and
donor lymphocytes, as well as novel ATC therapies, such as
CAR-T-cells in haematological malignancies by analysing their
strengths, weaknesses, opportunities, and threats (SWOT). The
biological rationale for anti-cancer mechanisms and
development; current clinical data in specific haematological
malignancies; efficacy, toxicity, response and resistance
profiles; novel strategies to improve these characteristics; and
potential targets to enhance or expand the application of these
therapies are discussed. 

Haematology boasts the first clinical application of one of the
oldest forms of cancer immunotherapy: allogeneic
hematopoietic stem cell transplantation. First performed in
1957, HSCT involves eradication of the patients’
haematopoietic and immune system and replacement with
donor stem cells. In 1968, E. Donnall Thomas performed
pioneering work in allogeneic transplant, became the father of
stem cell transplantation and won the Nobel Prize in Medicine
and Physiology (1). Over one million HSCTs have been
performed since, curing patients with haematologic
malignancies, solid tumours, and non-cancerous diseases. HSCT
remains the most frequently used cellular immunotherapy
approach as its application continues to increase with widening
of alternative donors and clinical indications (1-3).

In recent years, haematology has also been at the forefront
of more novel T-cell-based immunotherapies. Tisagenlecleucel
(Kymriah) was the first chimeric antigen receptor (CAR)-T-cell
therapy approved in 2017 for the treatment of paediatric and
young adults with relapsed or refractory B-cell precursor acute
lymphoblastic leukaemia (BCP-ALL). Initial breakthroughs
with CAR-T-cells spearheaded their application in other
malignancies, including solid tumours, offering dramatic
therapeutic potential in previously untreatable diseases. 

Despite opportunities for cancer immunotherapies, several
challenges remain. Limited applicability across diseases,
unpredictable efficacy, and limiting toxicities attest to the
need for further improvements. This review discusses the
strengths, weaknesses, opportunities and threats (SWOT)
associated with adoptive T-cell (ATC) therapies for
haematological cancers including allogeneic transplant and
donor lymphocytes, as well as novel ATC therapies outside
the setting of allo-HSCT, with a focus on CAR-T-cells. The
biological rationale for anti-cancer mechanism; clinical data
in specific haematological cancers; efficacy, toxicity,
response and resistance profiles; novel strategies to improve
these characteristics; and potential targets to enhance or
expand the application of these ATC therapies is discussed.
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Allogeneic Haematopoietic Stem Cell Transplant
(HSCT) and Donor Lymphocyte Infusion (DLI)

Biological rationale for anti-cancer mechanisms and
development. 
Allogeneic HSCT. Allo-HSCT involving transfer of genetically
disparate (allogeneic) haematopoietic stem cells from healthy
donors to patients is a widely used curative therapy in cancer
and other diseases (4). The success of allo-HSCT derives from
the ability to use intensive chemoradiotherapy and from
donor-mediated graft-versus-tumour (GvT) immunity (5).
However, a major limitation of allo-HSCT is graft-versus-host
disease (GVHD), a systemic disorder characterised by donor
graft T-cell immune reactivity against host allo-antigens.
GVHD is a leading cause of transplant-related mortality. To
reduce GVHD, strategies such as T-cell directed
immunosuppression and allograft T-cell depletion have been
employed. Benefits of donor graft T-cell depletion as a means
to decrease chances of severe GVHD were realised early on
(6-8). Yet, graft failure (9), disease relapse, and opportunistic
infections necessitate improvement (10). 

DLI. Donor lymphocyte infusion (DLI) from ex vivo-
expanded allogeneic cytotoxic T lymphocytes reconstitutes
immunity, thereby decreasing infection risk whilst
increasing anti-tumour immune surveillance. DLI prevents
cytomegalovirus reactivation (11) and treats post-transplant
lymphoproliferative disease (PTLD) secondary to latent
Epstein-Barr virus (EBV) reactivation (12). DLI has been
employed against viral-related nasopharyngeal carcinoma
and EBV+ Hodgkin disease (13, 14). Donor T-cells also
recognize non-self leukaemic cell antigens, eliminating them
(10). In 1990, Kolb et al. showed that DLI could achieve
disease remission following relapse after nonmyeloablative
allogeneic transplant for chronic myelogenous leukaemia
(CML) (15). DLI for relapse prevention has been
investigated in multiple myeloma, acute leukaemias, and
lymphomas (16-20). Today, DIL remains an important
treatment, with refinements. 

Clinical data reflecting current practice. 
Allo-HSCT. According to the Centre for International Blood
and Marrow Transplant Research (CIBMTR) (21), the
number of allo-HSCTs in the USA increased by 1% in 2018,
whereas autologous HSCTs decreased by 5%. Fewer
autologous transplantations were performed for non-Hodgkin
lymphoma (NHL), while haploidentical (mismatched)
transplantations, a type of allo-HSCT using cells from a half-
matched donor (typically a family member) increased. Post-
transplantation cyclophosphamide prophylaxis for GVHD
was undertaken in almost all haploidentical transplantations.
Adults over 70 years old underwent HSCT at higher rates,
particularly for acute myeloid leukaemia (AML) and

myelodysplastic syndromes (MDS), for which allo-HSCT
remains the most effective cellular immunotherapy (22)
(Figure 1).

DLI refinements. DLI alloanergization by induction of
hyporesponsive donor T-cell activity against recipient
alloantigens facilitates autoimmune reconstitution while
minimising GVHD. Alloanergization is achieved by recipient
alloantigen presentation to donor T cells with concurrent
costimulatory blockade to avoid alloantigen targeting. In a
phase I study, low-dose alloanergized DLI following CD34-
selected myeloablative haploidentical HSCT improved
immune reconstitution without excess GVHD (22).
Alternatively, DLI manipulation can involve elimination of
GVHD-mediating T-cell populations. CD8+ T-cell depletion
was the first application. Others include CD25/Treg-
depleted, CD4-depleted, and CD62L-depleted DLI (23-25).

Strengths of allo-HSCT and DLI. 
Curative potential. Allo-HSCT offers curative potential in
fatal diseases. The disease-free graft and immune-mediated
GvT immunity from donor lymphocytes contribute to the
treatment’s success.

Limitations of allo-HSCT and DLI.
Ηuman leukocyte antigen (HLA) restriction and GVHD.
Despite advances with haploidentical HSCT, GVHD remains
a serious cause of treatment failure and mortality. HLA
restriction limits the possibility for universal off-the-shelf
approaches.

Immunosuppression. Allo-HSCT requires systemic immuno-
suppression to prevent GVHD. Yet, immunosuppression
limits the GvT immune response. Patients on long-term
immunosuppression for chronic GVHD face toxicities and
side effects. Tapering off immunosuppression risks GVHD,
while immunotherapy resistance may occur in chronic
GVHD (26). 

Opportunities for allo-HSCT and DLI. 
New therapeutic strategies. Prophylactic and therapeutic
DLIs have been developed. Examples include combining
pharmaceuticals with DLI, prior lymphodepletion, growth
factor-primed DLI, and CD4+ T-cell-enriched DLI.
Prophylactic DLIs (pDLIs) include G-CSF-primed pDLIs
and activated pDLIs (27).

Threats to allo-HSCT and DLI. 
Novel ATC therapies, including CARs, offer durable
responses without GVHD or immunosuppression since cells
are autografted. Allogeneic CAR-T-cells are also possible if
endogenous T-cell receptor (TCR) expression is disabled
(preventing GVHD) and HLA matching is not required.
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Adoptive T Cell Therapies Outside 
the Setting of Allo-HSCT

Biological rationale for anti-cancer mechanism and
development. 
TILs. The first ATC for non-viral cancers involved
allogeneic transplant of tumour infiltrating lymphocytes
(TILs) for leukaemia and melanoma. TILs are effector T-
cells that infiltrate tumours, attacking cancer. In 1988,
autologous TILs isolated from cancer biopsies and expanded
with IL-2 before intravenous reinfusion into the same patient
resulted in melanoma regression at a modest rate [34%
overall response rate (ORR)]. However, median duration of
response (DOR) was only 4-months (28, 29) due to immune
tolerance and tumour escape.

TILs represent an experimental treatment, not used in
routine clinical practice. Except for melanoma and
cholangiocarcinoma, TILs have not been successful against
other cancers as obtainment and sufficient expansion is
challenging (30). TILs are limited by small numbers of
invasive lymphocytes and lack of significant innate anti-tumour
immunity enhancement (31). 

Genetically engineered redirected T-cells overcome the
limited T-cell migration and survival, and cancer immune
escape associated with TILs (32, 33). Engineered T-cells
express high affinity TCRs whereas natural T-cells with
high-affinity TCRs are difficult to obtain, partly due to intra-
thymic deletion (34).

Redirected T-cell therapy. Molecular identification of the TCR
(35, 36) and the establishment of its role in antigen recognition
(37, 38) laid the foundation for T-cell genetic engineering. T-
cell engineering involves six steps: patient apheresis; T-cell
enrichment; gene modification; activation and ex vivo
expansion; quality control; and patient reinfusion (Figure 2).
Modification of cytokine-encoding genes prolongs T-cell
survival and cancer tissue penetration (32). Gene-editing
strategies include retroviral vectors (39), liposomes (40),
electroporation (41), and recently CRISPR/Cas9 (42-44).

TCR transgenic T-cells. Transferring cloned TCR genes from
TILs to extracted patient T-cells was the first example of T-cell
engineering (45, 46). Redirecting T-cells against cancer
antigens has been shown to result in clinical regression (45,
47). Viral vector TCR-T-cell engineering to induce expression
of CD20 has been found to be efficacious against NHL and
mantle cell lymphoma (48) as well as in metastatic melanoma
(49). TCR-T-cells against the cancer-testis antigens NY-ESO-
1 and LAGE-1 demonstrated a response rate of 80% in
multiple myeloma (MM) (50). Efficacy was also shown in
neuroblastoma (51). Clinical trials are underway for
haematological (52) and solid cancers (31). However, TCR
transgenic T-cells have still not been approved. HLA and

MHC-restriction, side effects, and lack of TCR genes with
defined specificity (53, 54) have redirected interest towards
CARs (55, 56). 

CAR-T-cells. In the 1980s, T-cell specificity was redirected by
incorporating genes encoding artificial TCR-like molecules
formed by single-chain variable antibody fragments (scFv),
spacers, transmembrane domains, and intracellular signalling
components. These became known as chimeric antigen
receptor (CAR)-T-cells (55, 56). CAR-T-cells target cancer
surface antigens via scFv and exhibit MHC-independent
cytotoxicity, thus broadening TCR applications (57). CAR-T-
cells have evolved structurally and functionally (Figure 3)
(58). Engineering involves electroporation or viral vectors
(59). CAR-T-cells have been extensively investigated and have
been shown to produce cytotoxicity (54-56, 60, 61) which
results in dramatic control of haematological malignancies
(62-65), with moderate efficacy against solid tumours (66-68).
Four CAR-T-cell agents are licensed for haematologic
malignancies.

Clinical translation.
Tisagenlecleucel (Kymriah®). Tisagenlecleucel was the first
CAR-T therapy approved in August 2017 for
relapse/refractory BCP-ALL (69). Tisagenlecleucel requires
T-cell isolation and genetic modification of patient T-cells to
express anti-CD19 CARs. The CAR protein features an
extracellular murine anti-CD19 scFv portion and an
intracellular T-cell signalling (CD3-ζ) and co-stimulatory (4-
1BB) domain for T-cell activation, in vivo persistence and
anti-tumour activity. A multicentre, open-label, single-arm
trial of paediatric and young adult relapse/refractory BCP-
ALL showed 83% ORR, 63% complete response (CR) and
19% CR with incomplete hematologic recovery (CRi) at 3
months. All responders were minimal residual disease
negative (MRD <0.01%). Median CR DOR was not reached
at 4.8 months (17% relapse). Grade 3-4 ARs included
cytokine release syndrome (CRS) (49%), neurologic events
(18%), febrile neutropenia (38%), prolonged cytopenias
(37%), and infections (27%). Boxed warning and risk
evaluation and mitigation strategy (REMS) were issued for
CRS and neurotoxicity. Theoretically, tisagenlecleucel carries
secondary malignancy risk by insertional or replication-
competent lentivirus (RCL) mutagenesis. Tisagenlecleucel
persisted in vivo up to 366 days after treatment. Apart from
hypogammaglobulinemia due to on-target-off-tumour B-cell
depletion no ARs persisted.

In May 2018 approval was expanded to adult
relapse/refractory large B-cell lymphoma, including diffuse
large B-cell lymphoma (DLBCL) not otherwise specified
(NOS), high grade B-cell lymphoma, and follicular
lymphoma (FL)-transformed DLBCL after two systemic
therapies (70). In the single-arm, open-label, multicentre,
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Figure 1. Number of allogeneic transplants performed annually in the Unites States (US) among various disease indications. Allogeneic transplant
activity is decreasing in a number of diseases including chronic leukemias, lymphomas, and multiple myeloma, likely due to the availability of newer
non-allogeneic transplant options. Figure reproduced with permission from (21), data published from Centre for International Blood and Marrow
Transplant Research (CIBMTR). AML: Acute myeloid leukaemia; ALL: acute lymphoblastic leukaemia; MDS: myelodysplastic syndrome; NHL:
non-Hodgkin lymphoma; HL: Hodgkin’s lymphoma; CML: chronic myeloid leukaemia; MM: multiple myeloma; CLL: chronic lymphocytic leukaemia.

Figure 2. Flow chart of the steps involved in engineered T-cell therapy. 1) Blood is drawn from patients to obtain sufficient numbers of peripheral
blood mononuclear cells (PBMCs) for T-cell engineering. 2) T-cells are isolated from PBMCs and 3) are then activated and amplified in vitro. 4)
T-cells are genetically engineered, for example, via transfection of a viral vector (lentivirus or retrovirus) to express specific CARs/TCRs on the
cell surface. 5) T-cells are amplified and undergo quality control. Finally, 6) CAR-T- /TCR-T-cells are reinfused back into the patient to enhance
antitumor immunity. Adapted from (31).



phase II study (71) patients received a single tisagenlecleucel
infusion following lymphodepleting chemotherapy. ORR was
52% with 40% CR and 12% PR. At 12 months, 65% of
responders experienced relapse-free survival (79% in CR
patients). For CR patients, median DOR was not reached; for
PR this was 3.4 months. Commonest grade 3-4 ARs included
CRS (22%), neurologic events (12%), cytopenias (32%),
infections (20%), and febrile neutropenia (14%). No deaths
were caused by CRS or cerebral oedema. No difference in
response based on CD19 tumour expression or immune
checkpoint-related proteins were found. 

Axicabtagene ciloleucel (Yescarta®). Axicabtagene ciloleucel
(axi-cel), another autologous CD19-targeting CAR, gained
FDA approval in October 2017 for adults with
relapse/refractory large B-cell lymphoma, including DLBCL
NOS, primary mediastinal large B-cell lymphoma (PMBCL),
high grade B-cell lymphoma and DLBCL arising from FL,
after two prior systemic therapies (72). Similarities to
tisagenlecleucel include the murine anti-CD19 scFv and a
CD3ζ intracellular signalling domain. However, axi-cel is

linked to CD28 co-stimulatory domain and is created through
retrovirus vector editing. Safety and efficacy were
established in a phase II multicentre trial (73). CAR-T-cell
administration after low-dose cyclophosphamide and
fludarabine conditioning generated 82% ORR and 54% CR.
Highly durable responses were reported with 52% 18-month
overall survival (OS). Cytopenias were commonest grade 3-
4 ARs. Grade 3-4 CRS (13%) and neurologic events (28%)
resulted in the issue of Boxed Warning and REMS. 

Brexucabtagene autoleucel (Tecartus™). Brexucabtagene
autoleucel, another autologous CD19/CD28/CD3ζ
gammaretroviral vector-transduced CAR, became the first
CAR for mantle cell lymphoma (MCL). While structurally
similar to axi-cel, manufacturing is different. Accelerated
FDA approval was granted on July 2020 for adult
relapse/refractory MCL (74) based on an open-label,
multicenter, single-arm phase II trial (75). Patients received
a single infusion of brexucabtagene autoleucel of 2×106
CAR-T cells per kilogram after leukapheresis and optional
bridging therapy, followed by conditioning fludarabine and
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Figure 3. Generations of CAR-T-cell construct designs. First generation CARs contained only the CD3ζ domain, the initiator of T-cell receptor
intracellular signalling. However, these CARs demonstrated limited expansion and in vivo persistence due to lack of a costimulatory signal. Second
generation CARs were engineered to contain CD3ζ and a co-stimulation signal such as CD28 or 4-1BB, thus conferring enhanced cytotoxicity,
expansion, and persistence. Third generation CARs added another costimulatory domain with the first representing CD28 or 4-1BB and the second
representing CD28, 4-1BB, or OXO40. These offer superior T-cell expansion and longer persistence through increased cytokine secretion,
proliferation speed and survival rate of engrafted T cells. Fourth generation CARs, also called TRUCKs (T-cells redirected for universal cytokine-
mediated killing), possess a cytokine induced domain which activates downstream transcription factor NFAT to induce cytokine production after
antigen recognition, thus modulating immune effects. Fifth generation CARs, based on the second generation, require gene editing to inactivate the
T-cell receptor alpha constant (TRAC) gene, leading to the removal of the TCR alpha and beta chains and the creation of a truncated cytoplasmic
IL-2 receptor β-chain domain with a binding site for STAT3 transcription factor. Antigen activation triggers three synergistic signals through TCR
CD3ζ, co-stimulatory CD28, and cytokine JAK–STAT3/5 signalling, which drive T-cell activation and proliferation (58). Adapted from (31). 



cyclophosphamide lymphodepleting chemotherapy. Per-
protocol analysis at 6 months showed 93% ORR with 67%
CR while intention-to-treat analysis demonstrated 85% ORR
with 59% CR. At 12.3-month median follow-up 57% were
in remission. Progression-free survival (PFS) and OS at 12
months was 61% and 83%, respectively; median DOR was
not reached. Commonest grade ≥3 ARs were cytopenias
(94%) and infections (32%), while non-fatal CRS (15%) and
neurological events (31%) resulted in issuing of REMS.

Belantamab mafodotin-blmf (Blenrep™). Belantamab
mafodotin-blmf, the first anti-BCMA CAR, received
accelerated FDA approval in August 2020, for adults with
relapse/refractory MM after four prior therapies, including an
anti-CD38 monoclonal antibody, a proteasome inhibitor, and
an immunomodulatory agent (76). B-cell maturation antigen
(BCMA) is an MM cell surface protein mediating plasma cell
survival. The two-arm, randomised, open-label, multicentre
phase 2 trial (77) evaluated blenrep at 2.5 mg/kg or 3.4 mg/kg
infused intravenously over 30 minutes every 3 weeks until
progressive disease or limiting toxicity. ORR was 31% with
≥6-month DOR in 73% of responders at 2.5 mg/kg. Boxed
Warning was issued for corneal epithelium changes producing
altered/blurred vision, loss of vision, corneal ulceration and
dry eyes. Ocular toxicities restricted availability through
BLENREP REMS. Ophthalmic exams at baseline, prior to
each dose, and if symptoms worsen, are mandated.

Strengths of engineered T-cell therapies.
Responses in heavily pre-treated/resistant disease. CAR-T
cells offer remarkable potential in heavily pre-treated and
resistant disease. Approval for paediatric BCP-ALL and
DLBCL, both highly aggressive diseases, is an important
breakthrough.

Durable response and potential cure. Long-term response
and survival information is limited. Ongoing CRs range
between 43-113 months in aggressive lymphoma, low-grade
lymphoma, and CLL treated with anti-CD19 CAR-T-cells
offering hope for cure (78).

Flexibility. CAR synthesis with two receptors can refine
specificity with “OR”, “AND” and “NOT” Boolean logic
gates (79). Additionally, disabling endogenous TCR
expression allows for allogeneic CAR donors by preventing
GVHD, rendering HLA matching unnecessary. 

Limitations of engineered T-cell therapies. 
Target antigen identification. Target antigen identification is
not feasible for cancers without hallmark genetic phenotypes.
High target expression in cancer and low expression in normal
tissue reduces on-target off-tumour toxicities and maximises
efficacy. Crossover targeting is only permissible without

severe toxicity. Myelosuppression prevents myeloid
malignancy CAR treatments since CD123 or CD33 are present
on bone marrow stem cells (80). Antigen loss, such as in the
case of CD19, may also induce treatment failure (81).

Toxicity. CRS, caused by strong in vivo proliferation, appears
after cell transfer (82). Life-threatening effects involve
hypotension, high fever, capillary leakage, coagulopathy and
multiorgan failure (81). CAR-T-cell-related encephalopathy
syndrome presents with confusion and delirium, sometimes
seizures and cerebral oedema (83). First-line treatment for CRS
and CAR-T-cell-related encephalopathy are glucocorticoids
(81). Tocilizumab, a humanized anti-IL-6 antibody, is highly
effective in second-line CRS treatment (84). Lymphopenia and
hypogammaglobulinaemia (65), in CD19-specific CARs, are
manageable with intravenous immunoglobulin (81).

Costs and availability. Engineered T-cells necessitate costly
patient-specific design. Treatment access and manufacturing is
limited (81, 85). Tisagenlecleucel and axicabtagene ciloleucel
cost $475,000 and $373,000 per patient, respectively (81, 86),
excluding expenses for severe ARs ($30,000) (86). ICIs cost
$12,500 per month (81, 87). Despite restricted production to
few centres, manufacturing variability and lack of
standardisation produces heterogeneous outcomes (81, 85).

Manufacturing delay. Patient derived CAR manufacturing
imposes a lengthy manufacturing time. Patients may relapse
while waiting for treatment. 

Opportunities for engineered T-cell therapies.
Other immune cells. Natural killer (NK) cells display GvT
immunity without GVHD (88). Yet, tumour immune escape
may emerge from cancer cell proteolytic shedding of
immune-signalling ligands (89). Genetic deletion of immune
checkpoints maintains NK activity, eliminating cancer more
effectively than normal NKs. In phase I and II study, CD19
NK CARs achieved 75% ORR in relapse/refractory NHL
and chronic lymphocytic leukaemia (CLL) without major
toxicities (90).

New antigen targets. Target antigens are being evaluated in
haematological and solid malignancies (91, 92). The orphan G
protein-coupled receptor, class C group 5 member D (GPRC5D)
antigen offers comparable in vivo efficacy and toxicity in
BCMA (93). GPRC5D is also expressed on CD138+ MM cells.
Targeting CD22, expressed in B-ALL cancers, is a promising
prospect currently under investigation in a phase I trial (94).

Improving efficacy. CARs revive exhausted T-cells and
modulate inhospitable tumour microenvironment (TME) (81,
95, 96). New ‘armoured’ CAR-T-cells stimulate IL-12
production, overcoming Treg- and myeloid cell-mediated
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immunosuppression, promoting CD8+ T-cell activity (81, 97),
and increasing myeloid cell recruitment and antigen
presentation (81, 98, 99). In ovarian cancer models, IL-12-
expressing-CARs against mucin 16 extracellular domain
(MUC16ecto) were efficacious (81, 100, 101). A phase I trial
in ovarian, fallopian or primary peritoneal cancer is ongoing
(102). Chimeric cytokine receptor (4αβ) co-expression to
stimulate IL-4-dependent cell proliferation enhances efficacy
since IL-4 is abundant in the TME. This approach is effective
across tumour-associated antigens (TAAs) (81, 103). Trials are
ongoing for head and neck cancer (81, 104). Transcription
factor JUN overexpression confers resistance to CAR-T-cell
exhaustion, offering therapeutic potential (81, 105).

Reducing toxicity. IL-1 blockade is a novel intervention against
CRS (81, 106). Low-affinity CD19-specific CAR-T-cells
reduced toxicity and enhanced efficacy (107). CAR-T-cell
engineering with multiple receptor specificities further reduces
toxicity (81, 108). Transient receptor expression through
mRNA-based methods (81, 109) and clonal deletion of infused
cells by inclusion of a suicide cassette that is activated by
exogenous agents (81, 110), reduces cellular toxicity half-life.

CAR-T-cell combination therapy with other immunotherapies.
Combining CAR-T-cells with immunotherapies overcomes
cancer-mediated immunosuppression. Anti-PD-1 agents
enhance CAR-T efficacy, prolonging OS (111-114). In one case
report of relapsed DLBCL following sole CAR-T-cell therapy
in a patient with high PD-L1 expression, combination of CD19
CAR-T-cells with pembrolizumab achieved rapid remission,

increased CAR-T-cell numbers, and decreased PD-1 expression
(115). Oncolytic viruses may enhance CAR entry and
mobilization through chemokines (116-118).

CAR-T-cell combination therapy with non-immuno-therapeutic
modalities. Preclinical and clinical data support combinatorial
chemotherapy with CAR-T-cells (119, 120). Chemotherapy
improves CAR-T-cell efficacy reducing tumour burden and
immunomodulation (120). Chemotherapy sensitises tumours to
immunotherapy (121, 122), improves TAA presentation (123),
inhibits immunosuppression (124), and inhibits autoimmunity
prolonging CAR-T persistence in vivo (119, 125). 

Radiotherapy improves CAR-T-cell efficacy, stimulating
tumour-specific immunity to enhance tumour control locally
and distantly (125-127). Local irradiation sensitises tumours to
cytotoxic lymphocytes through TAA and MHCI expression
(128). Radiotherapy stimulates cytokines, including IFN-γ,
facilitating CAR-T-cell trafficking and TME infiltration (129),
and improving TAA presentation (130).

There is limited evidence for chemo-radiotherapy (CRT)
combination. CRT may increase CAR-T-cell efficacy by
increasing T-cell density (131) and T-cell stimulation (132,
133). Further research should investigate CAR-T-cell
combinations with non-immunotherapeutic treatments.

Threats to engineered T-cell therapies. 
Although ATC therapies are at the forefront, ongoing
breakthroughs may produce superior agents with improved
on-target off-tumour toxicity, efficacy, response, and off-the-
self availability. Examples of such agents include NK CARs.
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Table I. Summary of strengths weaknesses, opportunities and threats associated with allogeneic transplant and donor lymphocytes versus engineered
adoptive T-cell therapies. 

                                      Allogeneic transplant                                                                     Engineered adoptive 
                                      & donor lymphocytes                                                                     T-cell therapies

Strengths                       Curative potential                                                                           Responses in heavily pre-treated/resistant disease
                                                                                                                                              Durable response
                                                                                                                                              Potential for cure
                                                                                                                                              Flexibility

Weaknesses                   HLA restriction and GVHD                                                           Target antigen identification
                                      Immunosuppression                                                                        Toxicity
                                                                                                                                              Costs and availability
                                                                                                                                              Manufacturing delay

Opportunities                New therapeutic strategies                                                             Other immune cells
                                                                                                                                              New antigen targets
                                                                                                                                              Improving efficacy
                                                                                                                                              Reducing toxicity
                                                                                                                                              Combination therapy

Threats                          Novel adoptive cell therapy agents (e.g., CAR-T cells)              New superior adoptive cell therapy agents (e.g., NK CARs)



Discussion

ATC therapies demonstrate outstanding therapeutic potential
in haematological malignancies. Considering their strengths,
weaknesses, opportunities and threats is essential to directing
future investigation of their therapeutic potential (Table I). 

Allo-HSCT and DLI are widely used immunotherapies that
continue to cure many patients with haematological
malignancies. However, HLA restriction, GVHD and
immunosuppression have contributed to their overshadowing
by novel ATC agents, which may even allow for allogeneic
donors and HLA-independence by disabling endogenous TCR
expression. Nevertheless, allo-HSCT and novel strategies for
DLI modifications are still widely investigated. 

Novel ATC therapies have produced remarkable responses in
patients. However, they involve costly development of a new
therapeutic agent that is unique for each patient, while T-cells
take weeks to culture and patients require considerable
hospitalisation to receive treatment (134). MHC restriction and
the specificity of genomic aberrations to the cancer being
targeted prevent individual-synthesised ATC therapies from
being expanded across the general population, unlike agents such
as immune checkpoint inhibitors and bispecific T-cell engagers
which are broad-based, cost-effective, off-the-shelf agents. 

Conclusion

ATC therapies are a powerful therapeutic option for heavily
treated, otherwise non-responsive patients and non-
immunogenic cancers, which thus far represent the
overwhelming majority of human malignancies. Although
challenges persist, technological advances and novel
strategies to improve efficacy, reduce toxicity, and broaden
the application of ATC therapies are set to revolutionise the
landscape of cancer treatment in upcoming years. 
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