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Abstract. Background/Aim: Circulating tumor cells (CTCs)
may be affected by the environment encountered during blood
circulation. We aimed to explore the association between the
molecular phenotype of CTCs and systemic inflammatory
markers. Patients and Methods: CTCs isolated from patients
with recurrent/metastatic head and neck squamous cell
carcinoma by CD45-negative selection were analyzed for the
expression of multiple genes. The correlations between gene
expression levels in CTCs and systemic inflammation markers
were examined. Results: Thirty-five (83.3%) of the 42 patients
were positive for CTCs. No significant differences in systemic
inflammatory markers were observed between CTC-positive and
CTC-negative patients. Notably, VIM or ZEB2 expression was
strongly correlated with that of CD44 or ALDHI. PIK3CA,
CD44, ALDHIAI, and PDCDILG?2 expression in CTCs was
correlated with lymphocyte- and/or albumin-related systemic
inflammatory markers. Conclusion: CTCs acquire a survival
advantage through phenotypic alterations in the hostile blood
environment, and evade circulatory immune surveillance.

Similar to primary tumors and metastatic lesions, circulating
tumor cells (CTCs) that have detached from a primary tumor into
the bloodstream are also heterogeneous tumor cell populations
(1, 2). CTC migration to the bloodstream exposes them to a
hostile environment; in response, some subpopulations may
undergo necrosis, anoikis, or apoptosis by physical forces and/or
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immune surveillance, while others survive by acquiring resistance
mechanisms. Travelling into the blood circulation may affect
CTC characteristics through direct and/or indirect interactions
with various blood cells and their secreted humoral factors (3).
For instance, the association between neutrophils and CTCs
drives cell cycle progression within the bloodstream and expands
the metastatic potential of CTCs (4). Similarly, platelets can
protect CTCs against not only physical stress but also antitumor
immune responses (3, 5). Moreover, platelet-CTC interactions
induce an epithelial-mesenchymal-like transition and promote
metastasis by platelet activation and the release of soluble
mediators (6). Thus, in the blood environment, the phenotypic
heterogeneity and plasticity of CTCs could be shaped by complex
interaction networks between CTCs and circulating blood cells.

Cancer-related inflammation is a hallmark of cancer (7).
With disease progression and/or selective pressure due to
cancer treatment, the blood environment, specifically the
systemic inflammation status, is drastically altered. Tumor
cells can activate or inhibit a variety of blood cells and form
complicated patient-specific inflammatory states in both the
tumor microenvironment and systemic circulation, which are
related to clinical outcomes including disease progression,
treatment response, and prognosis (8-10).

The clinical significance of systemic inflammation
markers based on counts, ratios, or the scores of circulating
blood cells or acute-phase proteins, such as neutrophil-to-
lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio
(LMR), and a measure based on elevated serum C-reactive
protein (CRP) level and decreased serum albumin level, has
been extensively investigated (10). Similar to other types of
cancers, inflammatory markers may be useful markers for
predicting the clinical outcomes of patients with head and
neck squamous cell carcinoma (HNSCC). Rassouli et al.
showed that the platelet-to-lymphocyte ratio (PLR) and NLR
are independent predictors of mortality and recurrence,
respectively (11). Similarly, LMR 1is an independent
prognostic factor for HNSCC (12).

885



ANTICANCER RESEARCH 41: 885-893 (2021)

We previously reported that 24 (80.0%) of 30 patients
with recurrent/metastatic (R/M) HNSCC were positive for
CTCs and measured the expression of immune-regulatory
molecules in the 24 CTC-positive patients (13). In the
present study, we molecularly characterized the CTCs in 42
patients including those of 12 who were newly diagnosed
with R/M HNSCC. Finally, we investigated the association
between the CTC molecular phenotype and systemic
inflammation in patients with R/M HNSCC.

Patients and Methods

Patients. This study enrolled a total of 42 patients with R/M
HNSCC, including 30 patients described previously (13). Their
characteristics are shown in Table I. The median age of the patients
was 69 years (range=48-86 years). The tumor origins included the
oral cavity (n=5), nasopharynx (n=1), oropharynx [n=5 (2 were pl6
positive; 3 were p16 negative)], hypopharynx (n=19), larynx (n=5),
paranasal sinuses (n=6), and parotid gland (n=1). Recurrences in all
patients, including the overlapping cases, were observed in 17
(40.5%), 25 (59.5%), and 23 (54.8%) local, regional, and distant
sites, respectively. This study was approved by the Ethical
Committee of the Gunma University Hospital (No.12-12), and
written informed consent was obtained from each patient.

Circulating tumor cell (CTC) isolation and gene expression analysis.
CTC isolation and gene expression analysis were performed as
described previously (13). In brief, peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll-Hypaque density gradient
centrifugation of blood samples (7.5 ml) obtained from patients. The
contaminating erythrocytes were further lysed with red blood cell lysis
buffer (Roche Diagnostic GmbH, Mannheim, Germany). The cell
suspension was incubated with a human CD45 depletion cocktail for
15 min and subsequently with magnetic particles for 10 min
(EasySep™ Human CD45 Depletion Kit, Stemcell Technologies).
Tubes containing the PBMCs were placed in a magnet for 10 min
twice, and the unbound cells (CTCs) were transferred to new tubes.
Total RNA from the CTCs was extracted using a RNeasy Micro
kit (QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions. cDNA synthesis was performed using the QuantiTect
Reverse Transcription kit (QIAGEN) with 14 cycles of pre-
amplification using the TagMan™ PreAmp Master Mix kit (Applied
Biosystems). The pre-amplified products were subsequently analyzed
by real-time quantitative polymerase chain reaction (Applied
Biosystems, Waltham, MA, USA) for the 16 target genes. Sixteen
primers for the 15 targets [epithelial cell adhesion molecule
(EPCAM), MET, keratin 19 (KRT19), epidermal growth factor
receptor (EGFR), phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA), cyclin D1 (CCND1), snail family
transcriptional repressor 1 (SNAII), vimentin (VIM), zinc finger E-
box binding homeobox 2 (ZEB2), CD44, nanog homeobox (NANOG),
aldehyde dehydrogenase 1 family member A1 (ALDHIAI), CD47,
CD274, and programmed cell death 1 ligand 2 (PDCDILG2)] and
ACTB (pB-actin) as control were purchased from Applied Biosystems
(TagMan™ Gene Expression Assays). All samples were analyzed in
triplicate. The primer sequences for the 16 genes included in this
study are shown in Table II. Target gene expression in CTCs was
determined using a relative quantification method. Detection of at
least one of the four epithelial-related genes (EPCAM, MET, KRT19,
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Table 1. Patient characteristics.

Characteristics Value
Total patients (Male/Female) 42 (37/5)
Age (yrs): Median (range) 69 (48-86)
Tumor site
Maxillary sinus 6
Oral cavity 5
Nasopharynx 1
Oropharynx 5
(p16 status) (p16 positive, 2; p16 negative, 3)
Hypopharynx 19
Larynx 5
Parotid 1
Recurrence/metastasis
Local recurrence 17
Regional lymph node recurrence 25
Distant metastasis 23
Circulating tumor cells
Positive 35
Negative 7

Table II. Polymerase chain reaction primers used in this study.

Gene signature Gene symbol Assay ID

Epithelial EPCAM Hs00158980_m1
MET Hs01565576_ml1

KRTI19 Hs00761767_s1

EGFR Hs01076090_m1

Cell growth PIK3CA Hs00907957_m1
CCNDI Hs00765553_m1

Epithelial-mesenchymal transition SNAIT Hs00195591_m1
VIM Hs00958111_m1

ZEB2 Hs00207691_m1

Cancer stemness CD44 Hs01075861_m1
NANOG Hs04399610_g1

ALDHIAI Hs00946916_m1

Immune regulatory CD47 Hs00179953_m1
CD274 Hs01125301_m1

PDCDILG2  Hs01057777_ml

Reference ACTB Hs01060665_g1

and EGFR) was defined as CTC positivity. Since samples obtained
by negative selection are invariably contaminated with leukocytes,
the average threshold cycle (Ct) value of the CTC-negative samples
was used as the baseline for the control group. The Ct values of the
target genes were normalized to a reference gene (ACTB), and the
expression levels of the target genes in CTCs were estimated as fold
changes compared to those in the CTC-negative samples by the
relative quantification 2-delta-delta Ct method.

Data acquisition and systemic inflammatory markers. Laboratory
data including platelet, neutrophil, lymphocyte, and monocyte
counts and serum CRP and albumin levels were collected from
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patients’ clinical records within 2 weeks of blood collection for CTC
isolation. NLR, PLR, and LMR were calculated by dividing the
absolute values of the corresponding hematological parameters. The
systemic immune-inflammation index (SII), prognostic nutrition
index (PNI), and CRP/albumin ratio (CAR) were calculated as
follows: SlI=platelet count x neutrophil/lymphocyte count (14),
PNI=10x serum albumin+ 0.005x lymphocyte count (15), and
CAR=CRP/albumin (16).

Statistical analyses. GraphPad Prism version 8.0 for Windows
(GraphPad Software, San Diego, CA, USA) was used to perform
the statistical analyses. Mann—Whitney U-tests were used to
examine the differences in continuous variables. The correlations of
two continuous variables, gene expression levels in CTC and
systemic inflammatory markers, were determined by Spearman’s
rank tests. The Kaplan—Meier curves were plotted and compared
using the log-rank tests to compare survival curves between
subgroups. The optimal cut-off values of systemic inflammatory
markers for overall survival were determined based on receiver
operating characteristics curve analysis. Two-sided p-values <0.05
were considered statistically significant.

Results

Detection of CTCs and systemic inflammatory markers in
patients with RIM HNSCC. Thirty-five (83.3%) of the 42
patients with R/M HNSCC, including 30 patients reported in
our previous study (13), were positive for at least one
epithelial-related gene. The expression levels of epithelial-
related markers in 35 CTC-positive patients are summarized
in Figure 1. Among the 35 CTC-positive patients, EPCAM
was detected in 15 (35.7%), KRT19 in 29 (69.0%), EGFR in
14 (33.3%), and MET in 21 (50.0%) patients, respectively.
Next, we compared systemic inflammatory markers
including blood cell counts between CTC-positive and CTC-
negative patients and observed no significant differences
between the two groups (data not shown).

Molecular characterization of CTCs. The CTCs obtained from
35 R/M HNSCC patients were subsequently investigated for
the expression of 11 genes grouped into four gene signatures:
cell growth (PIK3CA and CCND]), epithelial-mesenchymal
transition (EMT) (SNAII, VIM, and ZEB2), cancer stemness
(CD44, NANOG, and ALDHIAI), and immune regulation
(CD47, CD274, and PDCDILG?2). The expression of each
gene in CTCs varied according to R/M HNSCC patients
(Figure 2), confirming our previous report of phenotypic
heterogeneity of CTCs among patients (17). Furthermore, we
also analyzed the correlations between gene expression levels
and observed a significant correlation between the same gene
signatures (Figure 3). VIM or ZEB2 expression was strongly
correlated with that of CD44 or ALDHI, suggesting a
significant role of these CTC subpopulations in the metastatic
process (VIM and CD44,r=0.9328, p<0.001; VIM and ALDH1,
r=0.8602, p<0.001; ZEB2 and CD44, r=0.8098, p<0.001;
ZEB2 and ALDH1, r=0.7062, p<0.001).

Prognostic significance of systemic inflammatory markers in
patients with R/IM HNSCC. The Kaplan—Meier survival
analyses were performed to evaluate the prognostic
significance of systemic inflammatory markers in patients
with R/M HNSCC (Figure 4). R/M HNSCC patients with
higher platelet counts, higher CRP levels, lower albumin
levels, higher NLR, lower PNI, or higher CAR had
significantly shorter survival than those in the pair groups
for each systemic inflammatory marker (platelet count,
p=0.036; CRP level, p=0.001; albumin level, p=0.041; NLR,
p=0.038; PNI, p=0.020; CAR, p=0.002).

Correlation between gene expression levels of CTCs and
systemic inflammatory markers. Finally, we examined the
correlations between gene expression levels in CTCs and
systemic inflammation markers in patients with R/M
HNSCC (Figure 5A and B). PIK3CA expression in CTCs
was correlated with  lymphocyte-related  systemic
inflammatory markers including lymphocyte count, NLR,
and LMR, while CD44 and ALDHIAI expression in CTCs
was correlated with lymphocyte- and albumin-related
markers (lymphocyte count, albumin level, and PNI) and
lymphocyte-related markers (lymphocyte count, NLR, PLR,
and PNI), respectively. Moreover, PDCDILG2 expression in
CTCs was correlated with nine of the 12 markers tested
(positive correlation: lymphocyte count, albumin level,
LMR, and PNI; negative correlation, neutrophil count, NLR,
PLR, SII, and CAR).

Discussion

Accumulating evidence has shown an association between
the existence or enumeration of CTCs and various clinical
factors in HNSCC (18-20); however, CTC heterogeneity and
longitudinal changes within the same patient are substantial
hurdles to understanding the biology and clinical potential of
CTCs. This study aimed to molecularly characterize CTCs
and their association with systemic inflammation in HNSCC.
Since CTCs are more frequently detected and show extensive
heterogeneity in patients with more advanced disease
compared to those in patients with early disease (21), we
enrolled patients with R/M HNSCC. As expected, CTCs
were detected in approximately 80% of patients. We
performed molecular characterization of CTCs based on four
gene signatures, cell growth, EMT, cancer stemness, and
immune regulation. Although the pattern of gene expression
levels in CTCs varied among patients, the overall gene
expression levels in CTCs revealed a strong positive
correlation with those in the same gene signature group,
except for genes regulating cell growth. Of note, the
expression levels of EMT-related genes were highly
correlated with those of cancer stemness. Previous reports
have indicated that two CTC phenotypic characteristics,
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Figure 1. Heatmap depicting the presence of circulating tumor cells and expression of four epithelial-related genes in patients with
recurrent/metastatic head and neck squamous cell carcinoma. The red square indicates positive gene expression.
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Figure 2. Gene expression of circulating tumor cells (CTCs) in patients with recurrent/metastatic head and neck squamous cell carcinoma. Heatmap
depicting fold changes of expression of 11 genes in CTCs compared to those in CTC-negative samples.
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Figure 3. Correlation heatmap with correlation coefficients based on gene

EMT and cancer stemness, are closely related and essential
for metastasis. Most CTCs of metastatic breast cancer
possess EMT and stem cell characteristics (22). Similarly,
Papadaki et al. reported that high CTC expression levels of
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expression levels in circulating tumor cells.

EMT and stemness markers were more frequently detected
in patients with metastatic breast cancer (23). As the subjects
in the present study had already developed a locoregional
recurrence and/or distant metastasis, they may have had an
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enriched subpopulation of CTCs with both EMT and
stemness phenotypes. During tumor blood dissemination,
CTCs in the blood not only encounter various host cells,
including leukocytes, platelets, and other CTCs but also
interact with the blood environment. Thus, CTCs may
acquire survival and metastatic potential through phenotypic
alterations due to environmental exposure.

The blood environment comprises several factors.
Systemic inflammatory markers are associated with disease

Figure 4. Continued

progression, treatment responses, and prognosis in various
cancers, including HNSCC (11, 12, 24-26). Our results
indicated that platelet count, CRP level, albumin level, NLR,
PNI, and CAR were prognostic markers in patients with R/M
HNSCC, suggesting that these markers might be useful for
evaluating life expectancy in R/M HNSCC.

In this study, lymphocyte- and albumin-related markers
were associated with PIK3CA, CD44, ALDHIAI, and
PDCDILG2 expression in CTCs. Both peripheral blood
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Figure 4. Kaplan—Meier survival analysis in recurrent/metastatic head and neck squamous cell carcinoma patients according to systemic
inflammatory makers. The optimal cutoff values of systemic inflammatory markers for overall survival were determined based on receiver operating

characteristics curve analysis.

lymphocytes and serum levels of albumin, a parameter of
nutritional status, influence immune cell function (27, 28);
therefore, high lymphocyte counts and high serum levels of
albumin may contribute to antitumor immune responses. As
they have left the immune-suppressive tumor micro-
environment, CTCs in the bloodstream are more vulnerable
to antitumor immune responses in the peripheral blood
compared to primary tumors and metastatic lesions. Thus,
the circulatory immune system might select for CTCs with
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immune-resistant phenotypes. The immune escape
mechanisms employed by CTCs in the peripheral blood
include human leukocyte antigen down-regulation and Fas
ligand, CD47, and programmed death-ligand 1 (PD-L1)
expression (29-31). Additionally, our findings suggest that
molecular alterations in CTCs allow them to escape immune
surveillance. Growing evidence supports the association
between immunosuppressive phenotypes and the gene
signatures tested in this study. Using a model of pancreatic
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Figure 5. Correlations between gene expression levels in circulating tumor cells and systemic inflammatory markers in patients with
recurrent/metastatic head and neck squamous cell carcinoma. (A) Correlation coefficient (upper row) and significance levels (lower row). (B)

Correlation heatmap with correlation coefficients.

cancer, Sivaram et al. showed that PIK3CA-AKT signaling
in tumors reduced major histocompatibility complex class I
and CD80 expression on the cell surface to promote immune
evasion (32). In contrast, CD44+ tumor-initiating cells in
HNSCC not only have an EMT phenotype but are also less
immunogenic, and selectively express PD-L1 compared to
CD44 cells (33). Similarly, EMT is strongly associated with
an inflammatory tumor microenvironment in lung cancer,
with increased levels of multiple immune checkpoint
molecules (34). Although these findings were based on

tumor tissues or xenografts and these phenomena might be
mirrored within the tumor microenvironments, CTCs in the
blood likely exhibit similar biological behaviors to acquire
immune-suppressive properties.

The main limitations of the present study are its small
sample size and heterogeneous population comprising
different primary sites and recurrence patterns. We are
currently conducting a large-scale study in pretreated
HNSCC patients to assess the molecular phenotypic
alterations of CTCs under blood environmental stress
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including antitumor immunity. Taken together, the present
study investigated CTCs from patients who had received
various treatments and had recurrent and/or metastatic
lesions; therefore, it was difficult to determine the molecular
mechanism of CTCs within the cascade of metastasis.
However, our results suggest the potent survival advantage
of CTCs through various phenotypic alterations in the hostile
blood environment, specifically against immune functions
defined by lymphocyte counts and serum albumin levels.
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