
Abstract. Enhanced understanding of the molecular features
of glioma has led to an expansion of murine glioma models and
successful preclinical studies. However, clinical trials continue
to have a high cost, extended production time, and low
proportion of success. Studies in large-animal models of various
cancer types have emerged to bridge the translational gap
between in vitro and in vivo animal studies and human clinical
trials. The anatomy and physiology of large animals are of more
direct relevance to human disease, allowing for more rigorous
testing of treatments such as surgical resection and adjuvant
therapy in glioma. The recent generation of multiple porcine
glioma models supports their use in high-throughput preclinical
studies. The demonstration of spontaneous glioblastoma
formation in canines further provides a unique avenue for the
study of de novo glioma. The aim of this review was to outline
the current status of large animal models of glioma and their
value as a transitional step between rodent models and human
clinical trials.

Advances in molecular technology have yielded an array of
genetically engineered mouse models that reproduce the various

features of glioblastoma (1). The strides made in these small
animal (rodent) models have improved our understanding of this
near-universally fatal disease and have led to many successes
in drug therapies. These successes, however, have not been
mirrored in human clinical trials, as made evident by less than
8% of recent cancer drugs proceeding beyond phase I (2). While
a positive trend in the number of phase II clinical trials for
glioblastoma exists, the converse is true of phase III results (3,
4). Clinical trials are resource-intense, with approved cancer
therapies now lasting around 8 years and costing 1.2 billion
dollars to develop (5). Indeed, the average development time
from phase II to phase III is estimated to be 7.2 years in
glioblastoma clinical trials (6). Since the approval of
temozolomide in 2005 for the treatment of glioblastoma, there
have been no approved therapies that improve overall survival
(7, 8). The intensive nature and limited success of clinical trials
highlight the need for more representative preclinical animal
glioblastoma models. The present review explores the emerging
evidence for reliable and reproducible large animal models of
glioblastoma.

Historical Perspectives

The role of animal models in glioblastoma research, and other
cancer types, has largely been twofold: One, to better
understand the molecular events leading to tumorigenesis,
and two, to study the effectiveness of existing and new
treatment strategies. Mice have been the primary organism of
preclinical animal cancer modeling, and improved outcomes
in patients with cancer have been due, at least in part, to their
versatility for subsequent therapeutic development. However,
as we enter the next era of therapeutic development, the
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limitations of murine cancer models have sparked a search
for alternative animal models, including large animal models.
Large animal models overcome many of the anatomic and
physiological limitations of modeling human disease in
rodents. While large animal models are not intended to
supplant all aspects of rodent research, they may serve as a
transitional step in therapeutic development that better
replicates human physiology and thus improves success in
clinical trials (Figure 1) (9). The laboratory facilities required
for genetic manipulation of these large animal models are not
yet on par with those for mouse models; however, a growing
interest in the field is expected to lead to expansion of their
applicability and use (9). Common large-animal models
include porcine (pig) and canine (dog) models, and, less
commonly, non-human primate (NHP) models.

Limitations of Murine Cancer Models

The advantages of murine models are well documented and
contributed to their establishment as the dominant preclinical
animal cancer model. The small size of each organism is ideal
for handling and care, lending to lower overall maintenance
costs and a limited burden on individual labs and institutional
housing centers (10). The rapid speed of reproduction coupled
with large litter sizes is favorable for breeding and maintenance
of genetically engineered mice populations (10). In addition,
extensive characterization of the mouse genome has allowed
for both ease and precision of genetic manipulation (10).
Current molecular technology permits the spatial and temporal
control of tumor formation and progression in mice, leading to
tumors that better recapitulate their human counterparts (11).
Logistically, mice have been an optimal organism for modeling
the genetic and physiological features of cancer, but the
significant difference between mice and humans contributes to
their translational limitations. 

On first observation, there are evident anatomical and
physiological differences between humans and mice, most
apparent of which is size, with humans growing to be 3,000-
fold larger than mice (12). The size difference is magnified for
the brain, given the fact that the human brain is over 100 times
larger in weight and more than 1,000 times larger in surface
area and number of neurons (13, 14). This limitation is evident,
for example, in the study of optic glioma in a mouse model of
neurofibromatosis type 1, where the optic nerve is smaller than
a grain of rice, thus limiting the use of imaging and surgical
techniques (9). Further, the mouse brain is lissencephalic,
lacking the gyration and cortical development characteristic of
humans and other large animals (15). Lastly, functional aspects
arising from neural network phenomena, such as seizures or
cognitive dysfunction, cannot be modeled in animals where the
networks of interest are absent or not easily comparable with
humans (16, 17). Thus, in the study of glioblastoma, well
known for its infiltration of the brain parenchyma, critical

anatomical differences in the organ of origin impose potentially
confounding factors in preclinical investigation. 

On average, humans live 30-50 times longer than mice and
are known to undergo 105 more cell divisions, thus harboring an
increased risk of neoplastic transformation relative to mice (12).
The short lifespan of mice further limits the development of
certain types of cancer or highly penetrant cancer associated with
loss of heterozygosity mutations (12, 18). Mice also exhibit
significantly higher metabolic rates than humans, posing
additional challenges to pharmacodynamic and pharmacokinetic
studies (12). While drug doses can be extrapolated between mice
and humans, in cancer chemotherapies with narrow therapeutic
indices, the ambiguity can further contribute to limitations for
phase I trials (19). In humans, the blood–brain barrier (BBB) is
a major obstacle for the delivery of drugs to the central nervous
system (7, 20). An increased proportion of neocortical astrocytes,
pericyte heterogeneity, and differences in vascular anatomy
between humans and mice present additional challenges to
preclinical modeling (21-23). With over 80% of the mouse
genome directly correlated with human orthologs, there are
genetic correlates to many of the driver mutations of human
cancer (24). However, there are well-documented examples of
mutation resulting in different phenotypes in mice and humans.
Loss of heterozygosity in the APC gene leads to invasive
carcinoma in the human intestine while in mice it is associated
with intestinal polyps with limited infiltration (25, 26). Similarly,
knockout Brca1/2 mice display no cancer while this mutation is
highly correlated with human breast and ovarian cancer (27).

While an extensive review of mouse models of glioma is
outside the scope of this review, glioma modeling has largely
been accomplished by chemically induced syngeneic or
autologous transplants, human glioma xenografts, and
genetically engineered models (1, 28, 29). As future cancer
chemotherapies are set to be targeted to specific molecular
profiles, there is an increased need for animal cancer models
that faithfully and reliably recapitulate human cancer.

Large Animal Models of Glioblastoma

Large-animal cancer models offer significant anatomical,
physiological, and genetic advantages to preclinical cancer
modeling. Porcine models have a long history in biomedical
research, ranging from insulin production to surgical technique
development, and are arguably the most evolved and versatile
of the large-animal glioma models (30). The pig brain is
gyrencephalic, better mirroring the convoluted surface of the
human cortex, and better recapitulating tumor infiltration, drug
delivery, and drug diffusion within cortical structures (Figure 2)
(13, 15, 31-34). The size of pigs also offers significant benefits
for high-resolution imaging of the brain (13, 32). Pigs also have
a relatively large litter capacity, with up to 20 offspring per year
(15). In addition, pigs pose fewer ethical concerns than their
canine or NHP counterparts, in part because their behavior

ANTICANCER RESEARCH 41: 5343-5353 (2021)

5344



repertoire is more limited. Canines have demonstrated
spontaneous formation of glioblastoma, thus offering a unique
opportunity to study glioma in the absence of exogenous
manipulative factors (35). NHPs are phylogenetically closer to
humans and provide a high degree of similarity in terms of
brain anatomy and molecular drivers of glioma-genesis (36). A
discussion of NHP models is included for completeness;
however, ethical considerations have limited their use as
preclinical cancer models in many countries.

Porcine models. Domestic or agricultural pig breeds have long
been used based on their low price and wide availability for
common breeds such as the Landrace, Yorkshire, and Duroc
(15). However, at mature size, pigs of these breeds weigh over
300 kg, posing a challenge for laboratory maintenance. To
overcome these limitations, minipigs such as the Yucatan,
Göttingen, and Sinclair breeds have been employed (15). With
a maximum size ranging from 35-90 kg, minipig models better
compare in body weight to humans and are generally favored
over agricultural breeds (15). Sequencing of the genome of the
domestic pig, Sus scrofa, was completed in 2012, thus
expanding its applicability to biomedical and cancer research
(37-40). Since then, further studies have provided the genome
sequences of several laboratory pig breeds, with a profound

impact on the development of genetically engineered porcine
models (41, 42). More continuous and complete mapping of
the porcine genome, recognition of homologous disease-linked
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Figure 1. Proposed workflow for translational glioma research between rodent models, large animal models, and human clinical trials.

Figure 2. Porcine brain anatomy bears greater similarity to the human
brain, allowing for advanced treatment approaches, ranging from
surgery to convection-enhanced delivery.



single nucleotide polymorphisms between humans and pigs,
and awareness of reduced population genetic variation in pigs
have further advanced these models (30, 43, 44). Comparative
analysis of the pig and human genomes revealed similarities
in epigenetic regulation and gene-transcription profiles,
another supporting factor for modeling human genetic diseases
(45). Indeed, successful genetic engineering has developed pig
models of Huntington’s disease, melanoma, neurofibromatosis
type 1, hepatocellular carcinoma, and adenomatous polyposis
(37-40, 46). Thus, it is reasonable to assume glioma might be
modeled in the same fashion. 

To date, there are several useful porcine models for glioma
(Table I). As laboratories make the appropriate accommodations
for larger animals, it is anticipated that this list will continue to
expand. Like humans, tumor formation in pigs is rare, and a
large gap in our understanding of the natural formation of
cancer in pigs is attributed to the limited lifespan that domestic
breeds have before commercial utilization (9). As a result, there
is no current evidence of spontaneous glioma formation in pigs. 

Two distinct pig models of glioma have been developed
using human cell-line xenografts (CLX). Human glioma cell
lines are derived from serially maintained cultures of prior
resected human glioma and are commercially available. Cell
lines commonly used in xenograft models include U87, U251,
T98G, and A172 (28, 29, 51). Application of glioma CLX in
pigs was first achieved when Selek et al. developed the first
large-animal model of glioma (47). Utilizing 3-month-old
Landrace pigs, a total of 21 animals were transplanted with
U87MG (or U87) cells or G6 tumor stem cells. Given that
CLX are prone to acute rejection due to immunological cross-
reactivity of host immunity to human cells, a prerequisite
condition is an immunosuppressed host. In mice, this has been
accomplished via genetically engineered immunodeficiency
(52). While a pig equivalent of this model does not yet exist,
Selek et al. achieved sufficient immunosuppression through
oral cyclosporine (47). Of note, genetically engineered pig
hearts with α1,3-galactosyltransferase knockout and transgenic
expression of human CD46 and thrombomodulin displayed
reduced immunogenicity for cardiac xenotransplantation,
pointing to emerging work on this front (53). Fourteen out of

fifteen U87MG recipient pigs showed macroscopic tumor
formation and neurological symptoms within 30 days.
Magnetic resonance imaging (MRI) of the U87MG tumors
were characterized by regions of brain iso-intensity on T1-
and hyperintensity of T2-weighted images, consistent with
human glioma (47). On histopathological analysis, the
tumors displayed increased cellularity, angiogenesis,
infiltration of normal brain parenchyma, and a degree of
pseudo-palisading necrosis (47). On immunohistochemistry,
tumor tissue stained positively for expression of glial
fibrillary acidic protein (GFAP), consistent with an astrocytic
character of the tumor (54, 55). 

Soon after, Khoshnevis et al. induced the formation of
glioblastoma in the Yucatan minipig via CLX of U87 cells (48).
By 28 days post-induction, eight out of nine pigs displayed
macroscopic tumor formation visible by computed tomography,
with masses that were histopathologically indistinguishable
from human undifferentiated glioma (48). One immediate
application of CLX models is the ability to evaluate drug-
delivery methods. Using the Yucatan minipig U87 glioblastoma
model, stereotactically delivered intratumoral 165Ho-siloxane
was used to assess the feasibility of microbrachytherapy, the
injection of microspheres of concentrated radioactive agents, to
treat glioblastoma (49). The lower average size of the Yucatan
minipigs facilitated animal maintenance, lower doses of
cyclosporine, and use of stereotactic frames (48). The ability to
demonstrate successful glioma formation in two laboratory pig
species represents a replicable model for future glioma
xenograft studies.

While xenograft models allow for the assessment of tumor
drug response, they pose several limitations (56). The
requirement for an immunocompromised host alters the
natural tumor–immune relationship and hinders the
development of immunological therapy. While the BBB
provides partial immunological isolation from the rest of the
organism, a detailed characterization of the pig immune
system and its impact on xenograft models have not been
achieved (57, 58). Further, the loss of intratumoral
heterogeneity arising from serial cell culture leads to cell
lines that lack the genotypic and phenotypic heterogeneity of
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Table I. Porcine models of glioma.

Type of                     Pig                             Source                    Tumor            Macroscopic       Histopathological                        Reference
model                      species                                                      formation, n              tumor                       tumor

CLX                      Landrace                           U87                       14/15                     Yes                           Yes                          Selek et al. (2014) (47)
                                                                         G6                          1/5                       Yes                           Yes                          Selek et al. (2014) (47)
                        Yucatan minipig                      U87                         8/9                       Yes                           Yes                     Khoshnevis et al. (2017) (48)
                                                                                                        5/5                       Yes                           Yes                     Khoshnevis et al. (2020) (49)
GEM             Göttingen minipig          Lentiviral vector               6/6                       Yes                           Yes                          Tora et al. (2020) (50)

CLX: Cell-line xenograft; GEM: genetically engineered model.



de novo glioma (59). Lastly, the use of established cancer
cells limits study of the events leading to tumor formation
and progression.

Recently, Tora et al. developed the first genetically engineered
glioma model in pigs via lentiviral-induced formation of high-
grade spinal cord glioma (50). In rodents, retroviral expression
of platelet-derived growth factor-β, HRAS-G12V, shRNA-p53
resulted in glioma formation (60-62). Employing a similar
strategy, Göttingen minipigs were injected with lentiviral vectors
expressing platelet-derived growth factor-β, constitutively active
HRAS, and shRNA-p53 (50). MRI of the spinal cord mass
demonstrated radiological characteristics similar to those of
xenografted glioma models (47, 50). Lesions confirmed as high-
grade glioma on histopathological analysis demonstrated
invasion of white and gray matter, high cellularity, elevated Ki-
67 expression, astrocytic morphology, and immunohistochemical
evidence of GFAP and oligodendrocyte transcription factor 2
(OLIG2) expression (50). Lentiviral induction of a glioma model
with multiple genetic abnormalities can be used to model the
genotypic heterogeneity of glioma, allowing for the study of
several common driver mutations (63). A critical advantage of a
genetically engineered model is the use of an immunocompetent
organism, which permits investigation of the tumor-immune
relationship and the testing of immunotherapies. Application of
CRISPR/Cas9 and Cre recombinase-loxP mutational methods to
pigs offers another means of recapitulating the molecular
features of human glioma (18, 42, 64). 

Canine models. Since the 1960s, canine models have been
utilized to study cancer progression and treatment. The earliest
canine studies induced malignancy in mongrel dogs using the
Rous sarcoma virus or live avian sarcoma virus (65, 66). This
created a replicable model for canine malignancies, especially
astrocytoma, that could be used for treatment evaluation (65).
The canine tumors created through viral induction could then
be resected, frozen, reanimated, and implanted in a different
mongrel dog, thus amounting to a transplantable canine cancer
model (66). The transplanted canine model exhibited a 93%
tumor growth probability (66). Krisht et al. expanded this work
by implanting tumors grown in nude mice derived from canine
gliosarcoma cells into five immunosuppressed adult mongrel
dogs, of which four developed cavernous gliosarcomas (67).
While these models displayed high penetrance for tumor
formation, they did not recapitulate the spontaneous tumors
observed in humans. However, dogs spontaneously develop
many cancer types including osteosarcoma, lymphoma,
melanoma, and glioma (35). These spontaneous tumors can
help to bridge the translation of findings from engineered
cancer treated in murine and in vitro models to human clinical
trials (5). In 2015, the National Cancer Institute’s Comparative
Brain Tumor Consortium was created to guide the development
of new treatments for human brain tumor patients through the
evaluation of canine brain tumors (68).

As in human patients, glioma is the most common primary
malignant brain tumor of canines (69). Brachycephalic breeds,
including Boston terriers and boxers, exhibit an elevated
genetic predisposition for glioma formation and are often
included in studies of these tumors (69). Canine glioblastomas
display a similar histological pattern as human primary
glioblastoma, including GFAP/vimentin expression, pseudo-
palisading necrosis, increased angiogenesis, microscopic
invasion, hypercellularity, and inflammation (Figure 3) (69,
70). A comparison of the genomic profiles of canine and
human glioma by Amin et al. revealed similarities in driver
mutations, the timing of mutations, and epigenetic patterns of
canine glioma and pediatric glioma (71). Dogs harboring brain
tumors can receive treatment with maximal surgical resection
followed by adjuvant therapy. As with humans, survival for
dogs with glioma is dependent on the extent of resection, with
longer survival for dogs with gross total resection as compared
to those with subtotal or no resection (72). Canines with glioma
exhibit 1-to 2-month survival without treatment (69). Thus,
they can be used to test therapies before human trials (Figure
1). Dickinson et al. utilized spontaneous canine gliomas to
evaluate convection-enhanced delivery of liposomal irinotecan,
a topoisomerase I inhibitor, and gadoteridol in nine dogs with
grade 2 or 3 gliomas (73); 88% of those tumors exhibited a
post-treatment decrease in volume and demonstrated the
importance of monitoring with MRI while performing
convection-enhanced delivery (73). The ability of minicells
containing doxorubicin to cross the BBB and selectively infect
glioma tumor cells while sparing systemic toxicity has been
evaluated in dogs with spontaneous glioma (74). This led to a
phase I human clinical trial in Australia and the USA (75).
Application of the workflow from mice to a large-animal
model was seen with pharmacological testing of nanoparticle
delivery of immune-modulatory microRNA to a canine model
following successful trials in mice (76).

The principal benefit of studying spontaneous canine
tumors is their ability for significant, natural tumor growth
during a reasonable time period and the feasibility of treating
in a multistep fashion under conditions similar to human
tumors (73). Another value of the canine model is the
heterogeneity that mimics that seen in human patients. There
is inter-patient heterogeneity, as dogs of varying ages and
breeds develop different types (i.e., oligodendroglioma,
astrocytoma) and grades of glioma in diverse brain locations,
each having different immunological and genetic profiles (77,
78). There is also intra-patient heterogeneity, as spontaneous
canine glioblastoma exhibits pleomorphic cells, necrosis,
vascular proliferation, and pseudo-palisading that is seen in
human glioblastoma but not in murine xenografts (77). While
spontaneous canine gliomas are useful during advanced
stages of testing for novel therapies, they are not as useful for
the characterization of the effect of single mutations on
glioma-genesis, which is better accomplished in genetically

Hicks et al: Large Animal Models of Glioma (Review)

5347



engineered mouse models (77). Another limitation of these
models is the genetic makeup of common companion dogs.
Some outbred dogs, such as those with a mixed background,
better replicate the diverse genetic background characteristic
of humans, while inbred dogs often lack genetic diversity (5).
Experimental sample size can also be a limitation for these
studies given that only 12,000 dogs will develop detectable
brain tumors annually in the USA and a minimum of 18-20
has been proposed as the sample size necessary for testing in
canine clinical trials (77). The limited numbers available and
the requirement for reagents suitable for canines limit the
feasibility of these studies (79). An additional limitation for
natural history and treatment studies is the practice of early
euthanasia at different stages after symptoms develop (72,
79). The performance of neurological examinations by
veterinary neurologists combined with serial MRI monitoring
can allow objective quantification of progression-free
survival, which unlike overall survival is not affected by
euthanasia (80).

Non-human primate models. NHPs are attractive models for
studying human disease because they are the most
physiologically, anatomically, and genetically similar animals
to humans, and therefore may best recapitulate tumor
behavior and therapeutic responsiveness (36, 81). Indeed,
there is a near 1:1 homology between NHP and human
genomes (36). Nevertheless, studies in NHP models of
cancer have been limited primarily to case reports and series
of incidentally discovered tumors (82-85). One case series
studied radiation-induced glioblastoma in Macaca mulatta
(rhesus macaque) (86, 87). Lonser et al. demonstrated that
after fractionated whole-brain radiotherapy (3,500 cGy over
2 weeks), a majority of M. mulatta developed glioblastoma
between 2.9 and 8.3 years after radiotherapy (86). These
tumors exhibited histological and genomic characteristics
similar to de novo human glioblastoma (86). In a follow-up
study, tumors in these animals with multiple glioblastomas
likely arose from distinct precursor cells (87). Furthermore,
primates that did not develop glioblastoma had histological
evidence of atypical tumor precursor cells without common
glioblastoma biomarkers (87). Together, these studies
demonstrated that it was possible to model radiation-induced
glioblastoma in M. mulatta after whole-brain radiation
despite a highly variable time range of tumorigenesis (86,
87). The long latency period before apparent tumorigenesis
may limit its utility to inform clinical trials. Nevertheless,
this model can prove useful to study the pharmacokinetics
and pharmacodynamics of potential glioma chemotherapies
(88). However, BBB integrity may not recapitulate drug
cerebrospinal fluid penetration in the disrupted blood–tumor
barrier typical of glioma (20). 

A lentiviral-induced glioblastoma model in Tupaia
belangeri (tree shrew) was achieved via lentiviral-mediated
overexpression of H-Ras and silencing of Tp53 and is
characterized by mesenchymal subtype glioblastoma (89).
This glioblastoma displayed classic histological features of
high-grade gliomas together with greater genetic similarity to
human glioblastoma as compared to mesenchymal mouse-
derived glioblastoma (89). Notably, there was a 100% success
rate of glioblastoma formation and onset of neurological
symptoms as early as 1 month after lentiviral injection (89).
The phylogenetic classification of T. belangeri has been
debated, with evidence supporting a closer association with
primates than previously thought and other studies reporting
the contrary (90, 91). Nonetheless, it provides another
possible model for large-animal glioma modeling.

NHP models are limited by the associated ethical
considerations. It has been argued that the study of NHPs is
justified and necessary due to their homology with humans,
while others view it as unnecessary due to the lack of
significant scientific discovery arising from use of these models
(92). The primary consideration when initiating research with
NHPs is the potential for benefit to humans. However, as with
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Figure 3. Histopathological and immune microenvironment similarities
between de novo canine and human glioma open opportunities for
immunological studies that are not feasible with other animal models.



most novel scientific approaches and with hypothesis-driven
research, the value of the research is not a priori predictable.
The debate and controversy around NHP research have led to
the reduction of NHP use in the United States and European
Union (93, 94). With now widely available genome-editing
technologies, the limited progress made in glioblastoma has
raised interest in their use in NHPs (95).

Conclusion

As the need for effective glioma treatments remains unmet,
attention has been turned to the development of more
informative preclinical animal cancer models. In recent years,
reproducible models of glioma have been developed in pigs
using human xenografted glioma cell lines and lentiviral
vector induction. Canines are shown to spontaneously develop
glioblastoma, however, the relative rarity of this occurrence
and lack of experimental reproducibility hinders its use. The
use of NHPs, while likely to be most genotypically and
phenotypically similar to humans, is limited by ethical
considerations. Thus, based on the current evidence, porcine
glioma models appear to be the most developed and promising
of the preclinical large-animal models. The study of xenograft
and genetically engineered porcine models offer a potential
tool of investigation to overcome the poor translational
outcomes of human clinical trials.
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