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Rapalink-1 and Hydroxychloroquine Exhibit an
Additive Effect in Undifferentiated
Pleomorphic Sarcoma by Inducing Apoptosis
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Abstract. Background/Aim: Advanced undifferentiated
pleomorphic sarcoma (UPS) has a poor prognosis and there
are few treatments that can improve overall survival.
Recently, Rapalink-1, a third-generation mammalian target of
rapamycin (mTOR) kinase inhibitor, has been developed and
shown to be effective against other tumours. However, mnTOR
inhibitors have been shown to induce autophagy and
resistance to anti-cancer drugs. This study aimed to
investigate the antitumor effects of Rapalink-1 with an
autophagy inhibitor. Materials and Methods: The antitumor
effect of Rapalink-1 and/or hydroxychloroquine in three UPS
cell lines was examined via cell viability analysis, western
blotting, flow cytometry and immunofluorescence. Results:
Rapalink-1 decreased cell proliferation and inhibited the
PISK/mTOR pathway. Combined treatment with Rapalink-1
and hydroxychloroquine enhanced the antitumor effect
compared to treatment with Rapalink-1 alone by blocking the
autophagy-inducing effect of mTOR inhibitors. Conclusion:
Combined treatment with Rapalink-1 and hydroxychloroquine
may be used as a potential therapeutic agent against UPS.

Undifferentiated pleomorphic sarcoma (UPS) is the most
common and most aggressive malignant soft tissue sarcoma
(1). Surgical treatment and adjuvant chemotherapy are the
first choices for localized disease. Chemotherapy and
radiation therapy are the main treatments for metastatic
disease, but their outcomes are generally poor (2). Various
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anti-cancer agents have been studied for soft tissue tumours
and anthracyclines are most commonly used for the treatment
of metastatic UPS (3). In addition, pazopanib, trabectedin,
and ifosfamide with doxorubicin can be used for treatment.
Despite the use of various anti-cancer agents, the progression-
free survival for metastatic disease remains poor (4).

In recent years, molecularly targeted drugs have been
developed for the treatment of malignant tumours. These
drugs inhibit specific molecules related to tumour growth,
such as the mammalian target of rapamycin (mTOR), which
interacts with phosphatidylinositol 3-kinase (PI3K) to
regulate a variety of cellular responses (5). PI3K/mTOR
pathway is important for the regulation of hallmarks of
cancer, and is also involved in tumour-promoting processes
(6). Its activation is associated with poor prognosis in
patients with soft tissue sarcoma (7). mTOR is an
intracellular serine/threonine kinase that regulates cell
growth, metabolism, and proliferation. It is composed of two
complexes: mTOR complex 1 (mTORCI1) and mTOR
complex 2 (mTORC?2) (8). mTORCI is involved in mRNA
translation, cell proliferation and autophagy, and is activated
by the phosphorylation of ribosomal p70S6 kinase (p70S6K)
and eukaryotic translation initiation factor 4E-binding
protein 1 (4EBP1) (9, 10). In contrast, n"TORC?2 is regulated
by the phosphorylation of AKT and is related to cellular
metabolism (11). First generation mTOR inhibitors, such as
rapamycin, bind to the intracellular receptor FKBP12 and
then to the FRB domain of mTOR, forming a stable complex
consisting of rapamycin, FKBP12, and mTOR (12). The
antitumor effect of first generation mTOR inhibitors on soft
tissue sarcoma has been studied (13, 14), however, they are
not effective enough to be the first choice of treatment. This
is because, although the first generation mTOR inhibitors
sufficiently inhibit mTORCI, they are associated with
inadequate mTORC?2 inhibition (15). Inability to inhibit
mTORC?2 leads to the reactivation of mTORCI1 through
AKT, which may lead to insufficient antitumor effects (16).
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Although second generation mTOR inhibitors such as
MLNO0128 inhibit both mTORC1 and 2, the effect only lasts
for a short duration. In glioblastoma cells, MLNO0128
inhibited both mTORC1 and mTORC2; however, the effect
only lasted for a few h. In addition, the activity of MLN0128
was lower than that of rapamycin in vivo (17). Many studies
are still being conducted; however, early reports did not
clarify any clinical benefit of second generation mTOR
inhibitor monotherapy in unselected populations (18). Thus,
a third-generation mTOR inhibitor, Rapalink-1, was
developed to overcome the shortcomings of each drug.
Rapalink-1 is an mTOR inhibitor that binds rapamycin and
a second generation mTOR inhibitor by a linker (19). It has
a durable, long-lasting effect like rapamycin by binding to
FKBPI12 and an inhibitory effect on both mTORC1 and
mTORC?2 similar to that of a second generation mTOR
inhibitor. Despite the reports on the anti-cancer efficacy of
Rapalink-1 on glioblastoma and renal cell carcinoma (5, 18),
its efficacy on UPS has not been reported. Inhibition of
mTOR induces autophagy, a lysosome-dependent cellular
survival mechanism. Autophagy provides recycled nutrients
by breaking down unused cellular components (20). Recent
studies have shown that autophagy plays an important role
in cancer proliferation and resistance to chemotherapy (21),
thus inhibition can improve the cytotoxicity of many
chemotherapeutic agents (22-24). However, the ability of
Rapalink-1 to induce autophagy is still unknown.
Additionally, the therapeutic effect of the combined use of
autophagy inhibitors remains unclear.

This study aimed to investigate the anti-cancer effect and
autophagy induction of Rapalink-1 on UPS cells. In addition,
combination therapy of Rapalink-1 and hydroxychloroquine,
an autophagy inhibitor, is demonstrated.

Materials and Methods

UPS cell lines and culture. The UPS cell lines Nara-H, Nara-F and
GBS-1 were used. Nara-H and Nara-F were purchased from
ScienStuff Co. (Nara, Japan) and GBS-1 was provided by the
Cancer Institute of the Japanese Foundation for Cancer Research
(Tokyo, Japan). Propagation was performed in Dulbecco’s modified
Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA)
containing 10% foetal bovine serum and 100 U/ml penicillin at
37°C in a humidified incubator with 5% CO,.

Cell proliferation assay. Rapalink-1 was used as an mTOR inhibitor
and hydroxychloroquine as an autophagy inhibitor. The cells were
cultured in 96-well plates at a density of 1x104 cells/well for 48 h
in DMEM. The medium was then removed and cells were cultured
in DMEM containing each drug. To investigate the independent
effect of Rapalink-1, different concentrations of Rapalink-1 (0.032,
0.16, 0.8, and 4 nM) were added to the cells for 24 or 48 h. To
examine the combined effect of Rapalink-1 and hydroxychloroquine,
25 puM hydroxychloroquine was added for 12 h, washed with
phosphate-buffered saline, and cells were treated with or without 0.8
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nM Rapalink-1 for another 24 h. The cells were then cultured in
DMEM containing 10 pL WST-1 (Sigma-Aldrich) for two h. Optical
density at 420 nm was calculated using Maltiskan FC (Thermo
Fisher Scientific, Waltham, MA, USA).

Western blotting analysis. The cells were seeded in six-well plates
at a density of 6x105 cells/well for 48 h. Next, the cells were treated
with different concentrations of Rapalink-1 for 24 h. To examine
the combinatory effect of Rapalink-1 and hydroxychloroquine, the
cells were treated in the same way as in the cell proliferation assay.
Following treatment, the cells were lysed with lysis buffer (Cell
Signaling Technology, Beverly, MA, USA) for 20 min on ice. The
cell lysate was centrifuged at 15,000 x g using a Tabletop Micro
Refrigerated Centrifuge 3500 (Kubota Shoji Co. Ltd., Tokyo, Japan)
for 30 min at 4°C. The supernatant was retrieved and adjusted to the
same amount of protein. These proteins were separated on NuPAGE
4%-12% Bis-Tris gels (Invitrogen, Carlsbad, CA, USA) and
electrophoretically transferred to nitrocellulose membranes.
Immunoblotting was performed with primary antibodies and anti-
rabbit secondary antibodies in the iBind solution (iBind Western
System, Life Technologies, Carlsbad, CA, USA) for three h. The
antibodies used were 4EBP1, phospho-4EBP1, S6 ribosomal
protein, phospho-S6 ribosomal protein, cleaved PARP, GAPDH
(Cell Signaling Technology, Beverly, MA, USA), AKT, phospho-
AKT (Abcam, Cambridge, UK), LC-3, and p62/SQSTM1 (MBL
CO., Nagoya, Japan). LC3 has two molecular forms, LC3-I and
LC3-1I, and LC3-I is localized in the cytoplasm. LC3-1 binds to
phosphatidylethanolamine and is converted to LC3-II, which binds
to the membrane of autophagosomes. Therefore, LC3-II is used as
an autophagic marker. p62/SQSTM1 is degraded by the autophagy
process and its intracellular level is considered to be an autophagic
marker. p62/SQSTMI1 protein is present in inclusion bodies
containing aggregates of polyubiquitinated proteins that are broken
by autophagy (25). Finally, protein signals were identified using a
Novex AP Chemiluminescent Detection Kit (Life Technologies) and
a LAS-4000 image analyser (Fujifilm Co., Tokyo, Japan).

Flow cytometry. Apoptosis was detected by staining the cells with
Annexin V-FITC kit (Beckman Coulter, Inc., Brea, CA, USA). The
cells were cultured in six-well plates at a density of 6x105 cells/well
for 48 h. To examine the combinatory effect of Rapalink-1 and
hydroxychloroquine, the cells were treated in the same way as in
the cell proliferation assay. The cell lysate was centrifuged at 500
x g at 4°C for five min and the supernatant was removed. The cells
were mixed in 1x binding buffer at a concentration of 1x10° cells
/ml. Annexin V-FITC and propidium iodide (PI) were added to 100
wl of cell lysate and incubated on ice for 15 min in the dark. Then,
400 wl of 1x binding buffer was added, and apoptosis was detected
using a CytoFLEX S flow cytometer (Beckman Coulter).

Fluorescence microscopy images of immunocytochemical staining
for LC3. The cells were cultured in six-well plates on 25-mm
circular coverslips at a concentration of 1x106 cells/well for 48 h.
To examine the combinatory effect of Rapalink-1 and
hydroxychloroquine, the cells were treated in the same way as in
the cell proliferation assay. Following treatment, the cells were fixed
with 4% paraformaldehyde in phosphate buffer for 10 min. Anti-
LC3 antibody was added to the cells for one hour at room
temperature to examine autophagy. Then, anti-IgG secondary
antibody (Alexa Fluor 488, code no. A11008; Invitrogen) was
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added, and the cells were incubated for 30 min. The cells were
observed under an epifluorescence microscope (FSX100, Olympus
Optical Co., Ltd., Tokyo, Japan) with a 50x objective lens.

Fluorescence microscopy images of Annexin V-FITC stained cells.
The cells were cultured and treated with Rapalink-1 and
hydroxychloroquine, as described above. The cells were then
incubated with Annexin V-FITC, PI, and Hoechst 33342 in the dark
for 15 min using a Promokine Apoptotic/Necrotic/Healthy Cell
detection kit (PromoCell GmbH, Heidelberg, Germany). The cells
were observed under an epifluorescence microscope (FSX100,
Olympus Optical Co., Ltd., Tokyo, Japan) with a 50x objective lens.

Statistical analysis. All graphs and analyses were performed using
GraphPad Prism 9 software (GraphPad, San Diego, CA, USA).
One-way analysis of variance and Bonferroni post-hoc tests were
used to examine the statistical differences among the groups.
p<0.05 was considered statistically significant in all analyses.

Results

Cell proliferation assay. Initially, the effect of Rapalink-1 on
UPS cell lines was examined. Rapalink-1 was shown to reduce
the viability of UPS cell lines in a concentration- and time-
dependent manner. Rapalink-1 significantly inhibited cell
proliferation in all treated cells treated at a concentration of 0.8
nM or higher compared to the control at 24 and 48 h (p<0.05,
Figure 1A). Additionally, the effects of combining Rapalink-1
and hydroxychloroquine were tested. Compared to Rapalink-1
alone, combination of Rapalink-1 and hydroxychloroquine
significantly inhibited cell proliferation from 76.4% to 46.5%
for Nara-H, from 55.7% to 29.2% for Nara-F, and from 61.2%
to 22.3% for GBS-1 (p<0.05, Figure 1B).

Western blot analysis. First, the effect of Rapalink-1 on the
PI3K/mTOR pathway was examined. In Nara-H, Nara-F, and
GBS-1 cells, Rapalink-1 inhibited the phosphorylation of
4EBP1, RPS6, and AKT, which are downstream proteins of
the PI3BK/mTOR pathway. The effect of Rapalink-1 on
autophagy was also determined. Rapalink-1 increased LC3-
II levels and decreased p62/SQSTMI1 levels in a
concentration-dependent manner (Figure 2A), which suggests
that Rapalink-1 induces autophagy. The combination of
Rapalink-1 and hydroxychloroquine increased LC3-II and
p62/SQSTM1 levels compared to Rapalink-1 or
hydroxychloroquine alone. In addition, the expression of
cleaved PARP, which was used as a marker of apoptosis, was
enhanced by the combination treatment (Figure 2B).

Flow cytometry. To examine the effect of Rapalink-1 and the
combination treatment of Rapalink-1 and hydroxychloroquine
on cell apoptosis, flow cytometry was performed to determine
the percentage of apoptotic cells. The Annexin V-FITC-
positive and PI-negative cells were considered as early
apoptotic cells. Rapalink-1 significantly increased the

percentage of apoptotic cells in Nara-H to 9.85%, compared
to 2.65% in controls. Similarly, after Rapalink-1 treatment,
the percentage of apoptotic cells increased significantly from
2.47% to 12.22% in Nara-F and from 0.36% to 17.45% in
GBS-1 compared to controls. In addition, the combination of
Rapalink-1 and hydroxychloroquine significantly increased
the percentage of apoptotic cells to 15.1% in Nara-H, to
22.46% in Nara-F and to 53.12% in GBS-1 compared to
Rapalink-1 alone (Figure 3A and B).

Fluorescence microscopy images. The expression of LC3 in
UPS cells increased after treatment of Rapalink-1. Moreover,
it was also significantly increased following the combination
treatment (Figure 4A). Apoptotic cells were also detected
using the Promokine Apoptotic/Necrotic/Healthy Cell
detection kit. Early apoptotic cells that were stained with
Annexin V-FITC, but not PI, were increased following the
combination treatment compared to controls, Rapalink-1 or
hydroxychloroquine alone (Figure 4B).

Discussion

UPS is the most frequent malignant soft tissue sarcoma with
poor prognosis due to its aggressiveness (4). Various anti-
cancer drugs, including mTOR inhibitors, have been studied,
but no drug has significantly improved survival rates yet (2,
3). This study investigated the anti-cancer effect of a third-
generation mTOR inhibitor, Rapalink-1, on UPS cells.
Additionally, the induction of autophagy in UPS cells was
investigated using Rapalink-1, and the anti-cancer effect of
combination therapy with hydroxychloroquine, an autophagy
inhibitor. The experiments showed that Rapalink-1 inhibited
the proliferation of UPS cells by inhibiting both mTORC1
and mTORC?2. It was also found that combination treatment
with Rapalink-1 and hydroxychloroquine was more effective
than Rapalink-1 alone, because of the induction of autophagy
by Rapalink-1.

The PI3K/mTOR pathway plays a crucial role in cell
growth, structural cytoskeleton remodelling, and cell
metabolism reprogramming in many types of cancer. In soft
tissue sarcomas, activation of PI3K/mTOR pathway has
worse prognosis (7). Thus, the inhibition of this pathway is
expected to improve treatment outcomes. mTOR is
composed of two complexes, and inhibition of only one of
them causes the other to be activated via feedback loops
(16). It has been proposed that blocking the entire pathway
is necessary for sufficient anti-cancer effects (26). A previous
study showed that rapamycin suppressed the phosphorylation
of p70S6K, but not 4EBP1, in mTORCI1. After rapamycin
treatment, 4EBP1 is dephosphorylated within a few h and
induces rapamycin resistance (17). In contrast, mnTOR kinase
inhibitor (TORKi), a second generation mTOR inhibitor, can
inhibit both complexes (27, 28). However, TORKi as
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Figure 1. Results of WST-1 cell proliferation assay in UPS cell lines. (A) Nara-H, Nara-F, and GBS-1 cells were treated with various doses (0.032-
4 nM) of Rapalink-1 for 24 and 48 h. Rapalink-1 significantly inhibited proliferation at a concentration of 0.8 nM compared to the control at 24
and 48 h in all cells (*p<0.05). There was also a significant difference between 0.16 nM and 4 nM concentrations, and a significant difference
between 24 and 48 h at concentrations of 0.8 nM and 4 nM (*p<0.05). One-way analysis of variance and Bonferroni post-hoc tests were used to
examine for statistical differences between the groups. (B) Nara-H, Nara-F, and GBS-1 cells were treated with 25 uM hydroxychloroquine for 12
h, and then cells were treated with or without 0.8 nM Rapalink-1 for another 24 h. Rapalink-1 significantly inhibited UPS cell proliferation compared
to the control (*p<0.05). Combination treatment with Rapalink-1 and hydroxychloroquine significantly inhibited UPS cell proliferation compared
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Figure 2. Western blot analysis of the PI3K/mTOR pathway, autophagy, and apoptosis in UPS cells during hydroxychloroquine and Rapalink-1
treatment. (A) UPS cell lines were treated with various doses (0.032-4 uM) of Rapalink-1. Rapalink-1 inhibited PI3K/mTOR signalling protein
marker expression and increased autophagy-related protein expression. (B) Combination treatment with Rapalink-1 and hydroxychloroquine inhibited

autophagy and induced apoptotic markers compared to treatment with Rapalink-1 alone. UPS, Undifferentiated pleomorphic sarcoma; HCQ,
hydroxychloroquine.
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Figure 3. Flow cytometry analysis of apoptosis during hydroxychloroquine and Rapalink-1 treatment. (A) Apoptosis detection by Annexin V-FITC/PI
double staining using flow cytometry. (B) Rapalink-1 increased apoptotic cells significantly in all cell lines compared to controls (¥*p<0.05).
Combination treatment with Rapalink-1 and hydroxychloroquine increased apoptotic cells significantly in all cell lines compared to treatment with
Rapalink-1 alone (*p<0.05). HCQ, Hydroxychloroquine.
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Figure 4. Fluorescence microscopy images analysing autophagy and apoptosis in UPS cells during hydroxychloroquine and Rapalink-1 treatment.
(A) LC3 was detected by immunolabeling after each treatment. LC3-positive puncta increased after combination treatment compared to the control
and other treatment (arrows). (B) Apoptotic cells were detected by Annexin V-FITC/PI double staining. Living cells were labelled blue, while early
and late apoptotic cells were identified as green and red. Early apoptotic cells increased after combination treatment compared to the other treatment
(scale bars=20 um). HCQ, Hydroxychloroquine.

4891



ANTICANCER RESEARCH 41: 4885-4894 (2021)

MLNO128 did not show sufficient efficacy in clinical trials
in glioblastoma and metastatic prostate cancer due to its
short duration of action (17, 29). Rapalink-1 combines the
effects of rapamycin on mTORC1 and dual mTORC1 and
mTORC?2 inhibition effects of MLNO128. A strong anti-
cancer effect of Rapalink-1 has been observed in
glioblastoma, prostate cancer and renal cell carcinoma by
blocking both mTORC1 and mTORC?2 (5, 30, 31). In this
study, it was found that Rapalink-1 inhibited the proliferation
of UPS cell lines in a dose- and time-dependent manner, and
decreased RPS6, 4E-BP1 and AKT phosphorylation in a
dose-dependent manner. These results suggest that Rapalink-
1 inhibits the mTOR pathway in UPS cells.

Autophagy maintains cellular homeostasis during
metabolic stress and prevents carcinogenesis by protecting
normal cells (32, 33). In advanced cancer, autophagy acts as
a survival mechanism that is induced by various intra- and
extracellular stresses in the cell (34). Targeting the
PI3K/mTOR pathway may not be effective in malignant
tumours, because one mechanism of resistance to the
inhibition of this pathway is the induction of autophagy (35).
Autophagy acts as a self-defence mechanism by allowing
tumour cells to escape apoptosis, thereby promoting drug
resistance (36-38). In sarcomas such as osteosarcoma and
UPS, mTOR inhibitors such as rapamycin are known to act
as potent inducers of autophagy (39). Previous studies have
shown that inhibition of autophagy by hydroxychloroquine
can enhance the cytotoxicity of chemotherapy (24).
Hydroxychloroquine is involved in the inhibition of
autophagy, because it affects lysosomal acidification and
subsequently inhibits autophagosome-lysosome fusion (34).
It was found that Rapalink-1 increased the level of the
autophagy marker, LC-3II, and decreased the level of
p62/SQSTMI in UPS cell lines in a dose-dependent manner.
In other words, Rapalink-1 induced autophagy as well as
rapamycin. In contrast, the western blot results showed that
the levels of LC-3II and p62/SQSTMI1 in cells treated with
Rapalink-1 and hydroxychloroquine were higher than those
in cells treated with Rapalink-1 alone. Immunocytochemical
analysis showed that the number of LC3 positive puncta
increased following combination treatment, compared to
Rapalink-1 alone. These results may be due to the fact that
hydroxychloroquine inhibits the late phase of autophagy,
which leads to increased accumulation of autophagosomes
and increased levels of LC3-II and p62/SQSTMI1. Next, it
was examined whether hydroxychloroquine increased
apoptosis because of impaired autophagy. In this study, cell
proliferation was markedly inhibited after treatment with
Rapalink-1 and hydroxychloroquine. Western blot analysis
showed that the cleaved PARP levels increased in cells with
combination treatment compared to Rapalink-1 alone.
Additionally, flow cytometry analysis and fluorescence
microscopy images showed that the number of apoptotic
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cells increased following combination treatment. These
results show that Rapalink-1 alone mildly induced apoptosis
in UPS cells, while the combination treatment induced
significantly greater apoptosis.

In conclusion, this study showed that Rapalink-1 had a
significant antitumor effect in UPS cells by inhibiting the
PI3K/mTOR pathway. Moreover, it was found that
hydroxychloroquine enhanced apoptotic cell death by
inhibiting autophagy. A limitation of this study is that only
three cell lines were examined in vitro. Further studies are
needed to clarify whether Rapalink-1 has an antitumor effect
in other UPS cells in vivo. Overall, combination treatment
with Rapalink-1 and hydroxychloroquine may be an effective
treatment for UPS.
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