
Abstract. Background/Aim: The aim of the study was to
investigate the effects of hypoxia on proliferation and the
expression of HIF-1α (hypoxia-inducible factor 1 alpha) and
JMJD1A (jumonji domain 1A) in head and neck squamous
cell carcinoma (HNSCC). Materials and Methods: FaDu and
HLaC78 cells were incubated for 1-24 h in hypoxia and
normoxia. Cell proliferation, mRNA and protein levels of
HIF-1α and JMJD1A were quantified by counting, PCR and
western blot. Results: Hypoxia led to a constant decrease in
cell proliferation. Short hypoxia resulted in an increase in
HIF-1α mRNA levels. This effect was reversed after longer
incubation. The western blot for HIF-1α showed a maximum
accumulation after 3-6 h of hypoxia. In FaDu cells, the
concentration of JMJD1A reached a peak after 6 h and
decreased thereafter, whereas in HLaC78 cells, it presented
a second peak after 48 h. Conclusion: The transcription
factors HIF-1α and JMJDA1 were confirmed as relevant
hypoxia-dependent regulators of carcinogenesis in HNSCC.

Oxygen homeostasis is crucial for the survival of mammalian
cells. Oxidative phosphorylation provides the required energy
supply as adenosine triphosphate. Hypoxia is intolerable for
most of the cells (1). It plays an important role in the
pathology of different diseases including ischemic stroke (2).
Atherosclerosis, thrombosis or an embolism, result in
decreased perfusion and impairment of the affected brain
tissue (3). However, a heterogeneous distribution in oxygen
concentration is crucial for the progression of many malignant
tumors. Hypoxic intratumoral areas are caused by an

inadequate oxygen supply towards the rapidly proliferating
tumor cells (4). In comparison to the healthy tissue of the
neck, untreated head and neck squamous cell carcinomas
(HNSCC) are clearly less oxygenated in certain areas (5).

The transcription factor hypoxia-inducible factor (HIF) is
an important stimulant of malignant progression of tumors
and physiological and pathological adaptations (6). HIF is a
heterodimer with an oxygen-dependent α subunit and a
constitutively expressed β subunit. There are three known
subunits 1α, 2α and 3α, while the latter is not ubiquitously
expressed and underexplored (7). HIF-1α has a molecular
weight of 120 kDa and a half-life of only a few minutes in
normoxia. It is stabilized during continuous hypoxia and can
accumulate in the nucleus (8). HIF-1β has a molecular weight
of 91-94 kDa and is constitutively expressed in the nucleus.
Stable HIF-1α accumulates in the cytosol and translocates to
the nucleus where it dimerizes with HIF-1β and can bind the
hypoxia response element (HRE) of target genes (9).

Furthermore, immunohistochemistry shows an
upregulation of HIF in primary and metastatic tumors (10,
11). Etiologically, low oxygenation leads to necrosis in
certain tumor areas, which are diffusely distributed and
surrounded by normoxic areas. Moreover, in HNSCC, a
clearly lower oxygenation of 15 mmHg could be shown
compared to healthy tissue with 44 mmHg (5). Other causes
for an upregulation of HIF in tumors could be the loss of
function of tumor suppressor genes like p53 or von Hippel-
Lindau via a decreased degradation of HIF-1α. Clonal
selection of cancer cells with an increased HIF-1α activity
then leads to the malignant progression of the tumor (12).
Tumor hypoxia interferes with the limited success of  tumor
therapies, by the decreased levels of chemotherapeutics and
the intrinsic radiation resistance of hypoxic areas (13). A
candidate to overcome the challenges of hypoxia in
chemotherapy is tirapazamine, which releases cytotoxic
radicals in hypoxia (14). In combination with cisplatin and
radiotherapy, tirapazamine achieved a better tumor control
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in stage III or IV squamous cell carcinoma of the head and
neck (15). For an ideal result, the pre-therapeutic
measurement of tumor oxygenation seems to be of clinical
relevance. Exogenic markers like pimonidazole and 2-(2-
nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)
acetamide (EF5) seemed to be promising. Evans and
colleagues showed a high heterogeneity of binding in
HNSCC specimens for EF5 (16). Since a pre-therapeutic
application of such markers is not practical, studies are
focused on the identification of endogenous markers. Janssen
and colleagues investigated immunohistochemical
parameters of tumor oxygenation and perfusion in HNSCC.
They concluded that HIF-1α might not be suitable as a
marker for chronic hypoxia, since its expression did not
correlate well with pimonidazole staining (17).

HIF-inducible genes, which influence cellular mechanisms
like angiogenesis, energy metabolism, proliferation, and
apoptosis could be of interest as endogenous markers for
hypoxia (18). One of the more than hundred HIF-inducible
genes is the Jumonji domain-containing protein 1A (JMJD1A)
(19). It was isolated in 1991 from testicular tissue and named
testis-specific gene A (20). Later, the synonyms lysine-specific
demethylase 3A (KDM3A) and JMJD1A were used. The gene
consists of 25 exons and expresses its eponymic protein with
a molecular weight of 147 kDa, which is located mostly in the
nucleus and partly in the cytoplasm (21). It is characterized
by its Jumonji C domain, which induces morphological
changes in embryogenesis (22). JMJD1A’s oxygen-dependent
and HIF-mediated expression could be shown both in vitro
and in vivo (23). Its demethylase function can regulate the
transcription of further genes, which amplify HIF effects and
thus promotes the proliferation and adaption of tumors
towards their hypoxic microenvironment (24).

To date, the effects of hypoxia on HIF and JMJD1A,
especially in HNSCC, remain unclear. Our aim was to
explore the expression of the genes HIF-1α and JMJD1A
and the tumor cell proliferation in HNSCC under hypoxia. A
better understanding of the underlying mechanisms could
help to improve strategies for cancer treatment in the future.

Materials and Methods

Tumor cell incubation. The HNSCC cell lines FaDu and HLaC78
were obtained by ATCC (via LGC Standards, Wesel, Germany)(25,
26). Cells were grown in Dulbecco’s Modified Eagle Medium
(DMEM) (Gibco Invitrogen, Karlsruhe, Germany) supplemented
with 10% FCS and 1% penicillin/streptomycin (Sigma-Aldrich,
Schnelldorf, Germany), and cultured at 37˚C with 5% CO2 in culture
flasks. Every other day the medium was replaced. After reaching 70-
80% confluence, cells were trypsinized with 0.25% trypsin (Gibco
Invitrogen, Karlsruhe, Germany), washed with phosphate-buffered
saline (PBS) (Roche Diagnostics GmbH, Mannheim, Germany) and
seeded in new culture flasks or treatment wells. Experiments were
performed using cells in the exponential growth phase.

Tumor cell proliferation. Tumor cells were first seeded on culture
plates and incubated for 24 h at 37˚C, 21% O2 and 5% CO2.
Thereafter, 6 plates (N0, N1, N3, N6, N24 and N48) were incubated
in normoxia, 5 plates were incubated in hypoxia at 37˚C with 5%
CO2 and 1% O2 (H1, H3, H6, H24 and H48) for 1, 3, 6, 24 and 48 h,
respectively. The supernatant was removed, cells were trypsinized
with 0.25% trypsin, DMEM with supplements was added, and cells
were counted electronically (Casy® Technologies, Innovatis AG,
Reutlingen, Germany).

Quantitative Real-Time PCR. Harvesting of cells for Real-time
polymerase chain reaction (rt-PCR) was performed on ice to prevent
degradation of HIF-1α mRNA. After removing the supernatant, 5ml
PBS were added and cells were scratched, resuspended and
centrifuged for 5 min at 4˚C and 1500 rpm. RNA was extracted
using a RNeasy Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. RNA concentration was determined
spectrophotometrically (Eppendorf AG, Hamburg, Germany).
Synthesis of cDNA was made from 50 ng of RNA using SuperScript
VILO Mastermix (Thermo Fisher Scientific, Waltham, MA, USA)
at 42˚C. Two microliters of template cDNA were added to a final
volume of 20 μl of reaction mixture consisting of 10 μl TaqMan
Gene Expression Master Mix, 1 μl of the according TaqMan Gene
Expression Assays (assay ID for HIF-1α Hs00153153_m1 and for
KDM3A/JMJD1A Hs00218331_m1, both Thermo Fisher Scientific)
and 7 μl RNAse free water. PCR cycle parameters included a first
step at 50˚C for 2 min, enzymatic activation for 10 min at 95˚C
followed by 40 cycles involving denaturation at 95˚C for 15 sec and
amplification at 60˚C for 1 min. Relative gene expression levels of
HIF-1α and KDM3A/JMJD1A were quantified with the fluorescent
TaqMan® technology. GAPDH (Hs02758991_g1, Thermo Fisher
Scientific) was used as an endogenous control to normalize the
amount of sample RNA. Each sample was measured in triplicate
and the comparative Ct method was used for relative quantification
of gene expression as described (27). Data were expressed as the
mean of three independent experiments.

Western blot. Harvesting of cells for western blot was performed on
ice to prevent degradation of HIF-1α protein. After removing the
supernatant, Laemmli buffer (100 mM Tris-HCl pH 6.8, 20%
glycerol, 4% sodium dodecyl sulfate, 1% 2-mercaptoethanol and
0.002% Bromphenol blue) was added for homogenization. Cell
lysates were heated at 95˚C for 10 min and centrifuged after cooling
down. Supernatants were used for western blot analysis. 25 μg of
total protein was electrophoresed and transferred to a nitrocellulose
membrane. After washing in TBST (10 mM Tris-HCl pH 8.0, 150
mM NaCl, 0,1% Tween 20) for 5 min membranes were blocked for
60 min with blocking buffer (5% nonfat dry milk, TBST).
Afterwards, membranes were washed in TBST three times for 5 min
and incubated with the primary antibody (pAb) at 4˚C overnight at
the following dilutions: anti-β-actin pAb 1:5000 (Cat. No. 610958,
BD Biosciences, Franklin Lakes, NJ, USA), anti-HIF-1α pAb
1:1000 (Cat. No. AF6746, Bio-Techne, Minneapolis, MN, USA) and
anti-JMJD1A pAb 1:500 (Cat. No. MA5-15739, Thermo Fisher
Scientific). After three washing steps with TBST membranes were
incubated for 1 h with horse radish peroxidase-conjugated anti-
mouse (Cat. No. 31437, Thermo Fisher Scientific) or anti-sheep
(Cat. No. HAF016, Bio-Techne) IgG at a dilution of 1:10000 or
1:1000, respectively and were finally developed using the
SuperSignal West Femto Maximum Sensitivity Substrate Enhanced



Chemiluminescence (Thermo Fisher Scientific). The signals were
then transferred to an X-ray film. Protein expression was quantified
by densitometry (ImageJ software, NIH, Bethesda, MD, USA) from
scanned western blots normalized to the actin signal.

Statistical analysis. All data were transferred to standard
spreadsheets and analyzed by statistical analysis (GraphPad Prism
6.07 Software, La Jolla, California, USA). Since we assessed the
effects of multiple factors (different degrees of oxygenation for
different incubation times), 2-way ANOVA was performed to
evaluate statistical significance. As a correction for multiple testing,
Tukey’s multiple comparison test was performed. Differences were
considered statistically significant when the p-value was <0.05, and
significant differences are indicated by an asterisk.

Results
Tumor cell viability and proliferation
Viability. The viability of FaDu and HLaC78 cells was stable
between 85 and 90 percent in hypoxia and normoxia for at
least 24 h. After 48 h in hypoxia viability of HLaC78 decreased
(N48: 84.76±7.21%; H48: 72.32±8.38%) more distinctly than
that of FaDu cells (N48: 89.99±2.12%; H48: 84.30±1.11%).
Differences were not significant (FaDu: p=0.86 for different
incubation times and p=0.50 for different levels of
oxygenation; HLaC78: p=0.10 for different incubation times
and p=0.12 for different levels of oxygenation, Figure 1).

Proliferation. FaDu cell proliferation was low in the first h
under both in normoxia and hypoxia. After 24 h, proliferation
increased more intensely in normoxia (198±19%) than in
hypoxia (160±15%). After 48 h, differences in proliferation
increased to 366±76% in normoxia and 230±71% in hypoxia.
Differences were statistically significant for an incubation of
48 h in normoxia (p<0.0001 for different incubation times and
p=0.11 for different levels of oxygenation by 2-way ANOVA,
with p(N0/N48)=0.0002 and p(N24/N48)=0.04 after correction
for multiple testing). HLaC78 cell proliferation showed a
higher increase after 24 h to 257±120% in normoxia and only
138±61% in hypoxia. After 48 h, the proliferation benefit in
normoxia increased to 347±122% compared to 125±30% in
hypoxia. Differences were not significant (p=0.12 for different
incubation times and p=0.08 for different levels of
oxygenation, Figure 2).

Real-time PCR
HIF-1α mRNA. For FaDu cells in hypoxia, HIF-1α mRNA
levels increased after 1 h (H1:111±9%) and continuously
decreased to about a fourth after 48 h (H48: 28±15%). For
FaDu cells in normoxia, HIF-1α mRNA levels were stable
between 88 and 109%. Differences were statistically
significant (p=0.0008 for different incubation times and
p=0.0006 for different levels of oxygenation by 2-way
ANOVA, with p(H0/H24)=0.02, p(H0/H48)=0.005 and
p(N48/H48)=0.001 after correction for multiple testing).

For HLaC78 cell in hypoxia, HIF-1α mRNA levels
continuously decreased even more to about a fifth after 
48 h (H48:18±1%). For HLaC78 cells in normoxia, HIF-1α
mRNA levels alternated between a decrease after 24 h (N24:
79±25%) and an increase after 48 h (N48: 199±61%).
Differences were statistically significant (p=0.20 for
different incubation times and p=0.001 for different levels
of oxygenation by 2-way ANOVA, with p(N24/N48)=0.049
and p(N48/H48)=0.0007 after correction for multiple testing,
Figure 3).

JMJD1A mRNA. For FaDu cells in hypoxia, JMJD1A mRNA
levels nearly doubled after 3 h (H3:184±39%), further
increased after 6 h (H6: 361±47%) and slightly decreased
after 24 and 48 h (H24: 332±61%; H48: 273±59%). For FaDu
cells in normoxia, JMJD1A mRNA levels were stable
between 88 and 108% until 24 h and increased to 154±17%
after 48 h. Differences were statistically significant
(p=0.0004 for different incubation times and p<0.0001 for
different levels of oxygenation by 2-way ANOVA, with
p(N24/H24)=0.001, p(H0/H6)=0.0002, p(H0/H24)=0.001 and
p(H0/H48)=0.023 after correction for multiple testing).

For HLaC78 cells in hypoxia, JMJD1A mRNA levels
continuously increased threefold after 6 h (H1: 145±21%;
H3: 193±57%; H6: 271±63%) and reached a maximum after
48 h (H48:554±172%). For HLaC78 cells in normoxia,
JMJD1A mRNA levels alternated more than in FaDu cells
with a decrease to about a half after 3 h (N3: 49±18%) and
about a twice after 48 h (N48: 191±34%). Differences were
statistically significant (p=0.002 for different incubation
times and p=0.001 for different levels of oxygenation by 2-
way ANOVA, with p(N48/H48)=0.012 and p(H0/H48)=0.001
after correction for multiple testing, Figure 4).

Western blot
HLaC78. For HLaC78 cells in hypoxia, HIF-1α protein
showed a maximum after 6 h and decreased after longer
incubation times. In normoxia, there were only weak signals
for HIF-1α after 6 and 24 h. JMJD1A protein showed signals
in all conditions. While it decreased in normoxia to a minimum
after 48 h, and was mostly constant in hypoxia (Figure 5).

FaDu. For FaDu cells in normoxia, HIF-1α protein showed a
slight increase of the weak signal, while in hypoxia it reached a
maximum after 3 and 6 h and decreased after 24 and 48 h.
JMJD1A protein increased in hypoxia to a maximum after 48 h.
In normoxia, there was a steadily weak signal (Figure 6).

Discussion

The role of hypoxia has been described for many
malignant tumors. Vaupel and colleagues showed that 50-
60% of locally progressed tumors show hypoxic or anoxic
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areas (28). Brizel and colleagues showed that the
oxygenation of the primary tumor is a prognostic factor in
HNSCC (29). They determined the oxygenation of primary

tumors pre-therapeutically and chose a partial pressure of
oxygen of 10 mmHg as threshold for hypoxia. The disease-
free survival after one year was 78% for patients with
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Figure 1. Tumor cell viability in normoxia and hypoxia. The viability of
(A) FaDu and (B) HLaC78 cells ranged between 85 and 90% in
hypoxia and normoxia for at least 24 h. After 48 h in hypoxia, viability
of HLaC78 cells decreased more distinctly compared to FaDu cells. The
experiments were independently performed three times, and the lines on
the graph show the arithmetic mean with the standard deviation.
Differences were not statistically significant (ns: nonsignificant).

Figure 2. Tumor cell proliferation in normoxia and hypoxia.
Proliferation of (A) FaDu and (B) HLaC78 cells was low in the first 6
h in normoxia and hypoxia. After 24 and 48 h, proliferation increased
more intensely in normoxia than in hypoxia for both tumor cells. The
experiments were independently performed three times, and the lines on
the graph show the arithmetic mean with the standard deviation.
Differences in (A) were statistically significant (ns: nonsignificant,
*p<0.05, **p<0.01, ***p<0.001). 



tumors, which had an oxygenation of more than 10 mmHg
in contrast to 22% for an oxygenation of less than 10
mmHg. Especially, if radiotherapy is planned, tumor

oxygenation plays a relevant role. Nordsmark and
colleagues showed in 31 patients that the local tumor
control probability after two years was significantly higher
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Figure 4. JMJD1A gene expression in normoxia and hypoxia. (A) In
FaDu cells, JMJD1A mRNA increased until 6 h in hypoxia and
decreased afterwards, while it was stable in normoxia. (B) In HLaC78
cells, JMJD1A mRNA continuously increased in hypoxia, while it
strongly alternated in normoxia. The experiments were independently
performed three times, and the lines on the graph show the arithmetic
mean with the standard deviation. Differences were statistically
significant (ns: nonsignificant, *p<0.05, **p<0.01, ***p<0.001).

Figure 3. HIF-1α gene expression in normoxia and hypoxia. (A) In
FaDu cells, HIF-1α mRNA slightly increased after 1 h and continuously
decreased to about 25 percent after 48 h in hypoxia, while it was stable
in normoxia. (B) In HLaC78 cells, HIF-1α mRNA decreased to about
20 percent after 48 h in hypoxia, while it strongly alternated in
normoxia. The experiments were independently performed three times,
and the lines on the graph show the arithmetic mean with the standard
deviation. Differences were statistically significant (ns: nonsignificant,
*p<0.05, **p<0.01, ***p<0.001).



(90%) in normoxic tumors as compared with the hypoxic
subgroup (45%) (30). Stadler and colleagues showed in a
collective of 59 patients that higher hypoxic tumor
subvolume negatively influenced the overall survival of

HNSCC patients, regardless of the primary therapy
modality (31). Later, an international multi center survey
with 397 patients confirmed the impact of tumor hypoxia
on the prognosis of HNSCC in a larger collective (32).
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Figure 5. HIF-1α and JMJD1A protein levels in HLaC78 cells, in normoxia and hypoxia. For HLaC78 cells, (A) HIF-1α protein showed a maximum
after 6 h and decreased after longer incubation times in hypoxia. In normoxia, there were only weak signals for HIF-1α after 6 and 24 h. (B)
JMJD1A protein showed signals in all conditions. While it decreased in normoxia to a minimum after 48 h, it was mostly constant in hypoxia.

Figure 6. HIF-1α and JMJD1A protein levels in FaDu cells, in normoxia and hypoxia. For FaDu cells, (A) HIF-1α protein showed a slight increase
of the weak signal in normoxia, while in hypoxia it reached a maximum after 3 and 6 h and decreased after 24 and 48 h. (B) JMJD1A protein
increased in hypoxia to a maximum after 48 h. In normoxia, there was a steadily weak signal.



A characterization of tumors showed that hypoxia induces
a clonal selection, which favors tumor cells that adapt their
gene expression best to an aggravated environment. The
resulting tumors show a malignant progression to an
aggressive phenotype with a low differentiation, increased
angiogenesis, invasive growth pattern and high potential of
metastatic spread (4). HIF-1 and its subunit α seem to have
an important function in this development as they are highly
expressed in many malignant tumors like bladder, prostate,
colon, lung, gastric, breast, renal, ovarian and pancreatic
cancer (10, 11).

However, the aim of this work was to determine the
expression levels of HIF-1α in the pharyngolaryngeal tumor
cell lines FaDu and HLaC78 as well as their proliferation
properties in hypoxia. Both cell lines showed reduced viability
and proliferation in hypoxia after 24 and 48 h. Similar results
were obtained in different human carcinomas under prolonged
hypoxia (33). Immunohistochemical staining in human tumor
xenograft systems showed a reduction of tumor cell
proliferation in hypoxia. Co-staining with pimonidazole as a
hypoxia marker and bromodeoxyuridine as a proliferation
marker identified hypoxic and nonproliferative cells in
different sites inside the tumor (34). Thus, there is a small
number of proliferative cells in hypoxic areas. Also, HNSCC
xenografts showed overlapping areas of cells positive for
hypoxia and proliferation markers (35).

This study showed an early increase and subsequently a
steady decrease of HIF-1α mRNA to 28 and 18 percent for
FaDu and HLaC78 cells, respectively, after 48 h of hypoxia.
Western blot showed an accumulation of HIF-1α after 3 and
6 h, which declined after longer incubation under hypoxic
conditions. Other studies showed an accumulation of HIF-
1α in FaDu cells already after 1 h in hypoxia (36). This
confirms the rapid stabilization of HIF-1α within a few h and
could indicate degradation of HIF-1α after longer incubation.
The decline of HIF-1α mRNA after more than 3 h could
demonstrate a secondary event of a reduced gene expression.
One possible explanation is the glucose dependency of HIF-
1α, as suggested by Vordermark and colleagues (37). It
might be that necessary substrates are depleted after longer
hypoxic incubation. Yet, this is in contrast with the increase
of HIF-1α mRNA after 48 h in normoxia in this study. An
explanation for this contradiction could be that the rapidly
proliferating cells consumed other essential nutrients in the
culture medium, while the glucose concentration is still
sufficient for an accumulation of HIF-1α. The nutrient deficit
might induce cellular stress and subsequently trigger an
increased expression of HIF-1α. For FaDu cells, however,
Vordermark and colleagues showed that other factors of the
tumor microenvironment like pH and growth factors do not
influence the accumulation of HIF-1α.

This study shows hints for a decrease of HIF-1α after
prolonged hypoxia in FaDu and HLaC78 cells. These results

have to be confirmed in further studies. One objective is to
prevent an intracellular accumulation of HIF-1α in different
ways. For example, a gene silence using the antisense
technique has been shown to down-regulate HIF-1α expression
(38). Furthermore, there are possible pharmacological targets.
The international hypoxia conference of 2003 has named two
promising drugs: geldanamycin, which can directly inhibit
HIF-1α, and topotecan, which inhibits HIF-1α indirectly via
inhibition of topoisomerase I (39). The anti-cancer drug
tirapazamine shows cytotoxic activity in hypoxia (40). This
effect has shown therapeutic effects on non-small cell lung
carcinoma and nasopharynx carcinoma (14, 41). Another
possibility is to use hypoxia in gene therapy. Obligate
anaerobes like Clostridia can target hypoxic and necrotic areas
and express anticarcinogenic substances (42). Further studies
have to expand on those findings and continue characterizing
HNSCC in hypoxia.

To evaluate its interaction with HIF-1α in HNSCC, this
study also investigated the role of JMJD1A. Its demethylase
activity is oxygen-dependent but is only inhibited by hypoxia
below 0.2 percent of oxygen concentration while it is fully
active in hypoxia of one percent. This oxygen concentration
leads to an intracellular accumulation of HIF-1α and
activation of its target genes like JMJD1A (43). In contrast
to other target genes, the activation of JMJD1A is specific
for HIF-1α while it is not activated by isoforms like HIF-2
(44). This specificity does not seem to be accidental,
JMJD1A interacts with HIF-1α by forming a complex and
activates its enzymatic function of regulating further target
genes in early hypoxia (45).

Compared to HIF-1α, this study showed a higher
induction of JMJD1A mRNA. In FaDu cells, relative gene
expression increased threefold after 6 h and decreased after
longer hypoxia. HLaC78 cells showed a second peak with a
fivefold JMJD1A expression after 48 h. Western blot analysis
revealed nearly constant levels of JMJD1A protein in
hypoxia for HLaC78 cells while it accumulated in FaDu over
time. Taken together, this indicates that JMJD1A plays a role
in early and late stages of hypoxia.

For tumors other than HNSCC, the role of JMJD1A in
carcinogenesis has already been investigated. In prostate
carcinoma, JMJD1A is over-expressed and enhances the
prognostic prostate-specific antigen in hypoxia (46, 47). In
hepatocellular carcinoma, JMJD1A is over-expressed and
deteriorates the prognosis. Its suppression could reduce
hypoxic effects like inhibition of proliferation and
enhancement of migration and invasiveness in hepatocellular
carcinoma cell lines (48, 49). Similar effects were seen in
bladder, lung, uterus and renal cancer (50-53). JMJD1A
could be a prognostic marker for colon carcinoma and
intensifies this malignancy (54, 55). In contrast, a study of
185 patients with nasopharyngeal carcinoma showed that an
underexpression of JMJD1A worsens prognosis compared to
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overexpressing tumors (56). More recent studies, however,
revealed the protumorigenic characteristics of JMJD1A in
solid tumors like hepatocellular carcinoma, cervix
carcinoma, rhabdomyosarcoma, glioblastoma and melanoma,
as inhibition of JMJD1A promoted the success of anti-
angiogenic therapy (57). These results highlight the expected
role of JMJD1A and the tumor microenvironment for the
malignant progression of different tumors. This study
elucidates the role of the oxygen-dependent transcription
factor JMJD1A and its interaction with HIF-1α in a hypoxic
environment. Future studies will analyze the underlying
regulatory mechanisms.
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