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Abstract. Background/Aim: Liver cancer has extremely
poor prognosis. The cancerous tissues contain hypoxic
regions, and the available drugs are poorly effective in
hypoxic environments. NADPH oxidase 4 (NOX4), producing
reactive oxygen species (ROS), may contribute to cancer
malignancy under hypoxic conditions. However, its role in
liver cancer has not been examined in detail. Our aim was to
explore the effects of setanaxib, a recently developed selective
NOX4 inhibitor, in liver cancer cells under hypoxic
conditions. Materials and Methods: Liver cancer cell lines
(HepG2, HLE and Alexander) were treated with hypoxia-
mimetic agent cobalt chloride. Cytotoxicity assays,
immunoblot analysis and ROS detection assay were
performed to detect the effect of setanaxib under hypoxic
conditions. Results: Setanaxib exhibited hypoxia-selective
cytotoxicity and triggered apoptosis in cancer cells.
Moreover, setanaxib caused mitochondrial ROS accumulation
under hypoxic conditions. Treatment with antioxidants
markedly attenuated setanaxib-induced cytotoxicity and
apoptosis under hypoxic conditions. Conclusion: Setanaxib
caused mitochondrial ROS accumulation in a hypoxia-
selective manner and evoked cancer cell cytotoxicity by
inducing apoptosis. Thus, setanaxib has a great potential as
a novel anticancer compound under hypoxic conditions.

Liver cancer is highly malignant, has an extremely poor
prognosis, and is the second leading cause of cancer-related
death worldwide, after lung cancer (1). Treatments for liver
cancer include radiofrequency ablation, transarterial
chemoembolization, liver transplantation and chemotherapy
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with drugs such as sorafenib and gemcitabine (2-4).
Unfortunately, none of these treatments results in favourable
outcomes.

Although the liver tissue is well-vascularized, aberrant
proliferation of cancer cells may result in regions with poor
blood circulation, as is the case with other tumours (5). In
these regions, hypoxic conditions may establish. Surprisingly,
the partial pressure of oxygen (pO2) in liver cancer tissue was
reported to be 0.8%, indicating much more severe hypoxia
compared to other types of cancer (6). Notably, hypoxic
conditions markedly attenuate the cytotoxic effects of
sorafenib and gemcitabine, contributing to the poor prognosis
of liver cancer patients treated with these drugs (7-9). Hence,
there is high demand for novel anticancer compounds capable
of maintaining their efficacy under hypoxic conditions.

The transcription factor hypoxia-inducible factor-1 (HIF-
1) plays an important role in hypoxic adaptation and controls
the expression of many target genes involved in proliferation,
survival, angiogenesis, and metabolism, thereby regulating
hypoxic adaptation (10-13). However, these downstream
targets of HIF-1 have not been characterized in detail.

The expression of the reactive oxygen species (ROS)-
producing enzyme, NADPH oxidase 4 (NOX4), is induced
in an HIF-1-dependent manner (14). It is known that ROS
play an important role as a signalling molecules. Under
hypoxic conditions, NOX4-derived ROS signalling
promotes the acquisition of a malignant cancer phenotype,
including epithelial mesenchymal transition (EMT), cell
migration, and invasion (15, 16). However, the exact role
of NOX4 in liver cancer cell viability has not been
extensively investigated. Recently, setanaxib (GKT137831),
a specific inhibitor of NOX4, has been discovered (17-19),
and is being tested in clinical trials for various pathologies.
Therefore, in this study, we aimed to examine the effect of
setanaxib on cancer cell viability under hypoxic conditions
and verify its efficacy as a candidate agent for the treatment
of liver cancer.

Our results demonstrated that setanaxib exerted cancer cell
cytotoxicity by inducing the production of mitochondrial
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Figure 1. Setanaxib induced selective cancer cell cytotoxicity under hypoxic conditions. (A) HepG2 cells were treated with 300 uM cobalt chloride
for 48 h and the protein levels of HIF-1a, NOX4, and Actin were determined by immunoblot analysis. (B-D) A CCK8 assay was conducted to assess
the viability of HepG2, HLE, and Alexander cells treated for 48 h with setanaxib under ordinary culture conditions or in the presence of 300 uM

cobalt chloride (*p<0.05).

ROS in a hypoxia-selective manner. We provide evidence
that setanaxib has immense potential as an anticancer agent
to be employed under hypoxic conditions.

Materials and Methods

Cell lines and culture conditions. The human liver cancer cell lines
HepG2, HLE, and Alexander (PLC/PRF/5) were obtained from the
Japanese Collection of Research Bioresources (JCRB, Osaka,
Japan). All cell lines were cultured in DMEM supplemented with
10% foetal bovine serum, 50 U/ml penicillin, 50 ug/ml
streptomycin, and non-essential amino acids (Gibco BRL, Paisley,
UK). The cells were cultured at 37°C under 5% CO,/95% air.

Reagents. Materials were obtained from the following sources:
GKT137831 from Selleckchem (Huston, TX, USA); Z-VAD-FMK
and PARP antibody from Cell Signaling Technologies (Beverly,
MA, USA); Actin antibody and BES-H202-Ac from Wako Pure
Chemical Industries (Osaka, Japan); NOX4 antibody from
Proteintech (Rosemont, IL, USA); Hochest33342 from Calbiochem-
Merck (Darmstadt, Germany); Dulbecco’s modified Eagle’s medium
(DMEM), dimethylsulfoxide (DMSO), cobalt chloride, ascorbic
acid, and MitoTEMPO from Sigma (St. Louis, MO, USA); HIF-1a
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antibody from GeneTex (Irvine, CA, USA); MitoSOXTM Red from
Life Technologies (Paisley, UK).

Immunoblot analysis. Protein extraction and immunoblot analysis
were performed as previously described (20). The antibody dilutions
were performed in accordance with the manufacturers’ instructions.

Cytotoxicity assay. The cells were seeded in 96-well plates at 5x103
cells/well. At 24 h after seeding, the medium was replaced by
DMEM with or without 300 uM cobalt chloride, followed by
treatment with serial dilutions of various agents. After 48 h of
incubation, the cytotoxicity was evaluated by using the Cell
Counting Kit-8 (Dojindo, Kumamoto, Japan). Cell cytotoxicity was
calculated relative to the vehicle control.

Plasmids and transfection. HepG2 cells were transfected with
plasmids containing MISSION® short hairpin targeting human
NOX4 (sh-NOX4 CCGGTCACCATCATTTCGGTCATAACTC
GAGTTATGACCGAAATGATGGTGATTTTTG)- (Sigma), by
using Lipofectamine LTX Reagent with PLUS Reagent (Thermo
Fisher Scientific) for 48 h. The cells were then transferred to a
medium containing 2 pg/ml puromycin (Sigma) for 2 weeks to
obtain stable expression.
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Figure 2. Setanaxib induced apoptosis under hypoxic conditions. (A) The protein levels of PARP and Actin in HepG2 cells treated with setanaxib,
with or without 300 uM cobalt chloride, for 48 h were determined by immunoblot analysis. (B) Immunoblot detection of NOX4 in HepG2 cells after
transfection with NOX4 shRNA. (C) Immunoblotting analysis of HepG2 cells transfected with a non-speficic sh-CONT or sh-NOX4, in the absence
or presence of 300 uM cobalt chloride for 48 h. (D) A CCKS8 assay was performed to assess the viability of HepG2 cells treated with setanaxib,
with or without Z-VAD-FMK, in the absence or presence of 300 uM cobalt chloride for 48 h (*p<0.05).
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Confocal microscopy

MitoSOX red. Cell staining with Hoechst and MitoSox Red was
detected by a confocal laser scanning microscope (LSM 880, Zeiss,
Jena, Germany) using a 63x/1.2 W C-Apochromat water-immersion
objective lens. Excitation of Hoechst and MitoSOX Red dyes was
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Figure 3. Continued

achieved by using 405- and 561-nm laser lines with the main beam
splitters, MBS 405 and 488/633. The emission spectrum was
measured in Lambda mode between 410 and 696 nm at 8.9-nm
intervals to discriminate between specific fluorescence and
autofluorescence.
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Figure 3. Excessive production of mitochondrial ROS induced by setanaxib caused apoptosis. (A, B) HepG2 cells treated with setanaxib in the
absence or presence of cobalt chloride (300 uM) were stained with Hoechst 33342 and BES-H,0,-Ac (5 uM) or with Hoechst 33342 and MitoSOX
Red mitochondrial superoxide probes (10 uM). The insets indicate magnified images of the boxed areas. Bar, 20 um. (B). HepG2 cells were treated
with ascorbic acid (100 uM) or MitoTEMPO (40 uM) in the presence of setanaxib, with or without 300 uM cobalt chloride, for 48 h. (C) Immunoblot
analysis of PARP and Actin. (D) MitoSOX Red fluorescence was assessed by using a plate reader. Fluorescence values were normalized to the cell
viability in each treated sample, and calculated relative to the vehicle-treated control (¥*p<0.05). (E) CCKS8 assay (*p<0.05).
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BES-H,0,-Ac. Images obtained after staining with Hoechst and
BES-H,0,-Ac were examined by a LSM880 microscope with a
20x/0.8 objective (Plan-Apochromat) in Lambda scanning mode.
The emission spectra of Hoechst and BES-H,0,-Ac was measured
between 410 and 696 nm at 8.9-nm intervals, at the excitation
wavelengths of 405 and 488 nm.

ROS plate reader assay. The cells were seeded at a concentration of
5x103 per well in 96-well plates (Sumitomo Bakelite, Tokyo, Japan),
treated with DMEM, with or without 300 uM cobalt chloride,
followed by treatment with serial dilutions of various agents for 48 h,
and then 7.5 pM MitoSOX Red was added to the wells. MitoSOX
florescence, reflecting cell activation, was measured after 1 h by using
a fluorescence plate reader (excitation=510 nm, emission=580 nm).

Statistical analysis. Data were obtained from at least three
independent experiments, and expressed as means+SD. The
statistical significance of the differences between groups was
determined by one-way analysis of variance (ANOVA), followed by
Scheffe post hoc test or by two-way ANOVA followed by Scheffe
post hoc test. p-Values of less than 0.05 were considered significant.

Results

Hypoxia-selective cytotoxicity of setanaxib. Cobalt chloride
was used to mimic hypoxic conditions (21, 22). Treatment
with cobalt chloride resulted in marked intracellular
accumulation of HIF-1, a known marker of hypoxia, as well
as in enhanced expression of NOX4 (Figure 1A). These
results strongly suggested that NOX4 was inducible and
NOX4 signalling activated under hypoxic conditions (23, 24).

The impact of setanaxib on cell viability was also
investigated. Setanaxib did not affect cell viability under
normal conditions but exhibited marked cytotoxicity under
hypoxic conditions in HepG2 cells (Figure 1B). Furthermore,
setanaxib showed hypoxia-specific cytotoxicity in HLE and
Alexander cells (Figure 1C, D). These results strongly
suggested that NOX4 was a regulator of liver cancer cell
viability under hypoxic conditions, and that setanaxib
exerted hypoxia-specific cytotoxicity in these cells.

Setanaxib cytotoxicity occurs via apoptosis. The role of NOX4
in cell viability is known to involve the regulation of apoptosis
(25, 26). Therefore, we examined whether apoptosis was
involved in the hypoxia-selective cytotoxicity of setanaxib.
Under hypoxic conditions, setanaxib caused remarkable
cleavage of the apoptosis marker PARP (Figure 2A). To
determine the role of NOX4 under hypoxic conditions, we
performed NOX4 knockdown in HepG2 cells (Figure 2B).
Under hypoxic conditions, prominent PARP cleavage was
observed in NOX4 knockdown cells (Figure 2C). In addition,
setanaxib-induced cytotoxicity was largely prevented by cell
treatment with the apoptosis inhibitor, Z-VAD-FMK (Figure
2D). These results demonstrated that NOX4 inhibited apoptosis
under hypoxic conditions, and suggested that setanaxib induced
cell death by blocking this pathway.
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Setanaxib-induced apoptosis is caused by ROS. As reported by
previous studies, cell apoptosis occurring under hypoxic
conditions is due to excessive levels of mitochondrial ROS
(27). Therefore, we investigated whether mitochondrial ROS
were involved in setanaxib-induced apoptosis and cytotoxicity
under hypoxic conditions. First, ROS intracellular levels were
examined by using the BES-H,0,-Ac probe, a highly specific
indicator of hydrogen peroxide (28); setanaxib treatment
resulted in hypoxia-selective accumulation of ROS in HepG2
cells (Figure 3A). Moreover, cell staining with MitoSOX, a
selective marker of mitochondrial ROS (29, 30), revealed that
setanaxib treatment resulted in hypoxia-selective accumulation
of mitochondrial ROS (Figure 3B).

Next, we examined how setanaxib-induced ROS production
affected apoptosis. Treatment with ascorbic acid, an antioxidant
(31), attenuated setanaxib-induced, hypoxia-selective PARP
cleavage, and markedly reduced ROS levels. Moreover,
MitoTEMPO (32), an antioxidant that selectively eliminates
mitochondrial ROS, caused a marked attenuation of setanaxib-
induced PARP cleavage and ROS accumulation (Figure 3C, D).
The cytotoxicity of setanaxib was also markedly attenuated by
treatment with MitoTEMPO (Figure 3E). These results strongly
suggested that the hypoxia-selective cytotoxicity of setanaxib
was caused by mitochondrial ROS-induced apoptosis.

Discussion

In the present study, we used liver cancer cell lines to explore
the suitability of setanaxib as a hypoxia-specific anticancer
drug, and to examine its mechanism of action in detail. We
showed that setanaxib exerted hypoxia-selective cytotoxicity
by promoting excessive ROS accumulation, which in turn
caused apoptosis. Cobalt chloride was used to mimic hypoxic
conditions. Additional studies employing other hypoxia-
mimetic agents will be required to in-depth characterize the
properties of setanaxib under hypoxic conditions.

We demonstrated that setanaxib exerted cytotoxicity only
in hypoxic environments and that mitochondrial ROS were the
cell death effectors. These results strongly suggested that
NOX4-derived ROS signalling suppressed the mitochondrial
ROS accumulation. We previously showed that autophagy, a
mechanism of intracellular quality control, supports cell
viability under hypoxic conditions (33). More specifically, the
process involves mitophagy, the selective degradation of
damaged mitochondria, which inhibits apoptosis and prevents
excess mitochondrial ROS accumulation (27). NOX4-derived
ROS signalling has been reported to activate autophagy (34).
Therefore, hypoxia-selective setanaxib cytotoxicity may be
due to the inhibition of NOX4-induced mitophagy, and to the
subsequent accumulation of mitochondrial ROS. Notably,
setanaxib did not affect cell viability under normoxic
conditions. Conceivably, under these conditions, injured
mitochondria are few and mitophagy is not required; as a
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consequence, ROS do not accumulate and cytotoxicity is not
triggered. Future studies are needed to examine the
relationship between NOX4-derived ROS signalling and
autophagy under hypoxic conditions.

The tumour microenvironment is characterized by nutrient
deprivation in addition to hypoxia (35). Effective drugs
targeting the tumour microenvironment must be directed
against molecules that are essential for adaptation to hypoxic
conditions and nutrient deprivation. As we have previously
reported, NOX4 activates the PI3K/AKT signalling cascade,
which is involved in cancer cell survival and proliferation
under conditions of nutrient deprivation (36). Therefore, NOX4
is a candidate drug target not only under hypoxic conditions
but also in nutrient-deprived tumour microenvironments. In
addition, the expression of NOX4 is higher in many cancer
tissues compared to normal tissues (37), and high NOX4
expression is reportedly associated with poor prognosis (38,
39). Moreover, NOX4 knockout does not affect the lifespan in
mice (40). These findings suggest that NOX4-targeting
therapies may be highly selective for cancer cells, possibly
minimizing the risk of non-specific adverse effects.

The NADPH oxidase (NOX) family comprises a total of
seven members in humans: five NOX (NOX1-5) and two
DUOX (dual oxidase) isoforms (41). NOX4 inhibitors have
low specificity and affect the activity of different NOX
isoforms. Therefore, to date, the application of NOX4
inhibitors in clinical practice has been considered
problematic (42, 43). In contrast, the recently developed
setanaxib has extremely high specificity for NOX4.
Moreover, a phase I clinical trial for setanaxib as a drug
candidate for primary biliary cirrhosis has shown that the
drug is well-tolerated and a phase II clinical trial has been
undertaken (44).

In conclusion, setanaxib is a NOX4-specific novel
potential anticancer agent. The effects of setanaxib against
other tumours, in addition to liver cancer, will also have to
be verified.

The present study is the first to demonstrate that setanaxib
exerts remarkable hypoxia-selective cytotoxicity in liver
cancer cell lines and that, therefore, is a promising candidate
drug for liver cancer treatment.
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