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Abstract. Background/Aim: Based on the cytotoxic agent (—)-
zampanolide, N,N’-(arylmethylene)bisamides were designed
and synthesized as candidate anti-cancer agents. Among them,
N,N’-[(3,4-dimethoxyphenyl)methylene [biscinnamide (DPMBC)
was identified as the most potent cytotoxic analog against
cancer cells. In this study, we investigated the mechanisms
underlying DPMBC-induced cell death in HL-60 human
promyelocytic leukemia and PC-3 human prostate cancer cells.
Materials and Methods: Cell growth was assessed by the WST-
8 assay. Induction of apoptosis was assessed by nuclear
morphology, DNA ladder formation, and flow cytometry using
Annexin V staining. Activation of factors in the apoptotic
signaling pathway was assessed by western blot analyses.
Knockdown of death receptor 5 (DR5) was performed using
SIRNA. Results: DPMBC up-regulated expression levels of DR5
protein and induced apoptosis through the extrinsic apoptotic
pathway mediated by DR5 and caspases. Conclusion: DPMBC
is an extrinsic apoptosis inducer, which has potential as a
therapeutic agent for cancer therapy.

Marine natural products have proved an abundant source of
promising candidates in the field of anti-cancer drug
discovery (1). (-)-Zampanolide is a unique 20-membered
macrolide isolated from the marine sponge Fasciospongia
rimosa collected in Okinawa (2), and has potent anti-
proliferative activity in cancer cells (3-4). The molecule also
shows highly potent anti-leukemic effects toward multidrug
resistant cells at low nanomolar concentrations (5-6). (-)-
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Zampanolide binds to the taxane-binding pocket of B-tubulin
and stabilizes microtubules (7-8). There are reports in the
literature detailing the total synthesis (9-13), synthetic design
of analogs (14-15), and biochemical properties (16) of (-)-
zampanolide.

Bisamide is a unique functional group that consists of two
amides connected with a methylene bridge (17, 18). In
pursuit of a chemically stable anti-proliferative molecule, it
was reasoned that replacing the chemically unstable N-
dineoylaminal unit in (—)-zampanolide with a N,N’-
(arylmethylene)bisamide unit would achieve this goal, and
thus, the so called N,N’-(arylmethylene)bisamides were
synthesized (19). Among these analogs, N,N’-[(34-
dimethoxyphenyl)methylene]biscinnamide (DPMBC)
showed the highest anti-proliferative activity in the human
promyelocytic leukemia cell line HL-60 and the human
leukemic monocytic lymphoma cell line U937 (19). Here, we
investigated the mechanism underlying the anti-proliferative
activity of DPMBC.

Apoptosis is a mode of programmed cell death associated
with activation of a series of caspase proteases leading to
chromatin fragmentation, and morphologic changes
including nuclear fragmentation (20, 21). Apoptosis can be
initiated via the intrinsic or extrinsic pathways. The cancer
chemotherapeutic agents, such as etoposide or paclitaxel,
induce apoptosis via the intrinsic pathway, which involves
mitochondrial-dependent processes, resulting in cytochrome
¢ release and activation of caspase 9. The extrinsic pathway
involves activation of death receptors expressed on the cell
surface. Death receptor 5 (DRS) is a receptor for tumor
necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) and mediates TRAIL-induced apoptosis through the
formation of a death-inducing signaling complex containing
the death receptor, adapter proteins such as the Fas-
associated death domain (FADD), and initiator caspases such
as procaspase-8. Several anti-cancer drugs are known to up-
regulate DRS5 expression (22).
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Figure 1. DPMBC suppresses proliferation of cancer cells. (A) The chemical structures of DPMBC and (-)-zampanolide are shown. (B-D) Cell
proliferation assays were performed in cells treated with DPMBC at the indicated concentrations. (B) Normal PBMCs (®: control, B: 3 uM, ®:
10 uM), (C) HL-60 cells (®: control, B: 4 uM, A: 8 uM, ®: 10 uM), and (D) PC-3 cells (®: control, B: 5 uM, A: 7.5 uM, @: 10 uM).

*p<0.05 vs. control.

In this study, we show that DPMBC induces apoptosis
through the up-regulation of DRS and activation of caspases,
preferentially in cancer cells. Therefore, DPMBC may be a
promising candidate for a new anti-cancer drug.

Materials and Methods

Cell culture. Normal peripheral blood mononuclear cells (PBMCs)
were isolated from healthy volunteers using Ficoll-Paque PLUS (GE
Healthcare, Chalfont St. Giles, Bucks, UK) gradient centrifugation. The
human promyelocytic leukemia cell line HL-60 and the human prostate
cancer cell line PC-3 were provided by the RIKEN BioResource Center
through the National Bio-Resource Project of the Ministry of
Education, Culture, Sports, Science, and Technology (MEXT), Japan.
Cells were maintained in RPMI-1640 medium supplemented with 10%
fetal bovine serum, 100 U/ml penicillin, and 100 pg/mL streptomycin,
and cultured in a humidified 5% CO, atmosphere at 37°C.

Cell proliferation assay. PBMCs or HL-60 cells were seeded into
96-well plates (5000 cells/well) and DPMBC was added
immediately. PC-3 cells (1000 cells/well) were cultured in a 96-well
plate at 37°C for 24 h, and then DPMBC was added and the cells
were further incubated for 24-48 h. Cell growth was assessed by
counting viable cells with the WST-8 assay using an SF kit (Nacalai
Tesque, Kyoto, Japan).
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Nuclear staining. HL60 cells were seeded at a density of 1.0x100
cells/mL in a 6 cm dish, and DPMBC was added at a final
concentration of 10 uM and incubated for 24 h. As positive control,
apoptosis was induced with 1 pM etoposide, and dimethyl sulfoxide
(DMSO:; 0.1% final concentration) was used as a negative control.
The cells were fixed with 3.5% formaldehyde, and nuclei were
stained using 4’,6-diamidino-2-phenylindole, dihydrochloride
(DAPI; Lonza, Basel, Switzerland) and observed using an Axiovert
200 fluorescence microscope (Zeiss, Jena, Germany).

DNA ladder assay. HL-60 cells were treated with DMSO (negative
control), etoposide (positive control), or DPMBC for 24 h. DNA
was collected using a Nal solution [6 M Nal, 13 mM EDTA, 0.5%
sodium N-lauroyl sarcosinate, 10 mg/ml glycogen, 26 mM Tris-HC1
(pH 8.0)]. The collected DNA was subjected to electrophoresis
using 2% agarose gel containing ethidium bromide and visualized
under UV light.

Small interfering RNA (siRNA) transfection. PC-3 cells were
transfected with LacZ-targeting (as a negative control) or DR5
siRNAs at a final concentration of 50 nM using Lipofectamine
RNAIMAX (Invitrogen, Waltham, MA, USA). The siRNA
sequences used have been previously described (23).

Antibodies. Anti-poly (ADP-ribose) polymerase (PARP) antibody,
anti-lamin A/C antibody, and anti-caspase-3, -7, and -8 antibodies
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Figure 2. DPMBC induces nuclear and chromatin fragmentation. (A) Representative phase contrast and fluorescence microcopy images of cells
treated with DPMBC and 0.1% DMSO (control) HL-60 cells are shown. Cells were treated with DPMBC or with the apoptosis inducer etoposide
(Eto). (B) HL-60 cells were treated with 0.1% DMSO (control) or with DPMBC or Eto, and a DNA ladder assay was performed.

were purchased from Cell Signaling (Danvers, MA, USA). Purified
mouse anti-cytochrome c antibody and anti-DRS5 antibody were
purchased from BD Bioscience (Franklin Lakes, NJ, USA) or
ProSci (Poway, CA, USA). Peroxidase-conjugated affinity purified
goat anti-rabbit IgG was purchased from Jackson ImmunoResearch
(West Grove, PA, USA). Peroxidase anti-mouse IgG was purchased
from Vector Laboratories (Burlingame, CA, USA).

Western blot analysis. Whole cell lysates were solubilized in 1%
sodium dodecyl sulfate (SDS) lysis buffer with protease inhibitor
cocktail (Nacalai Tesque). The cytosol fraction was isolated for
cytochrome c detection as follows: cells were collected and washed in
ice-cold phosphate-buffer saline (PBS), resuspended in S-100 buffer
(20 mM HEPES, 10 mM KCL, 1.5 mM MgCl,, 1 mM EGTA, 1 mM
EDTA, and 1% protease inhibitor cocktail), and incubated on ice for
15 min. Cells were centrifuged at 10,000xg for 15 min at 4°C.
Supernatants were further centrifuged at 100,000xg for 1 h at 4°C.
Samples were mixed with 3x Laemmli sample buffer, heated for 5 min
at 95°C, and subjected to 7-15% SDS-polyacrylamide gel
electrophoresis at 150 V followed by electroblotting onto nitrocellulose
for 30 min at 25 V using a Trans-Blot Turbo Transfer System (Biorad,
Hercules, CA, USA). After blocking with 5% fat-free milk in PBS-
Tween, membranes were probed for 1 h with primary antibodies in 3%
bovine serum albumin/PBS-Tween, and then washed and incubated
with secondary antibodies. The bound antibodies were detected using
Chemi-Lumi One Super (Nacalai Tesque, Kyoto, Japan) according to
the manufacturer’s instructions.

Apoptosis detection by Annexin V-propidium iodide (PI) double-
staining analysis. HL60 cells were seeded at a density of 1.0x103

cells/ml in a 6-well plate and DPMBC was added at a final
concentration of 8 uM with or without 50 uM caspase inhibitors
(ZVAD-FMK, pan-caspase inhibitor; ZLED-FMK, caspase-9
inhibitor; ZIETD-FMK, caspase-8 inhibitor; or ZDEVD-FMK,
caspase-3 inhibitor) and incubated for 24 h. Apoptotic cells were
detected using a MEBCYTO Apoptosis Kit (MBL, Nagoya, Japan).
Annexin V-positive and Pl-negative early apoptotic cells were
assessed by flow cytometry using a BD LSRFortessa X-20 cell
analyzer (BD Bioscience, Franklin Lakes, NJ, USA). At least 10,000
cells per sample were analyzed.

Statistical analyses. The statistical significance of differences between
groups was assessed by two-tailed Student’s 7-test using Microsoft
Excel software. A p-value of <0.05 was considered significant.

Results

DPMBC shows anti-proliferative activity in cancer cells. The
structure of DPMBC is shown in Figure 1A. We first examined
whether DPMBC at various concentrations (3-10 uM) showed
anti-proliferative activity in normal PBMCs, HL-60 cells, or
PC-3 cells. When we compared the viability of cells treated
with DPMBC at a concentration of 10 pM, an anti-proliferative
effect was more evident in the malignant cells than in the
normal PBMCs (Figure 1A-C). The IC5, of DPMBC in HL-
60 and in PC-3 cells was 4.6+0.8 pM and 7.9+0.6 uM,
respectively, whereas treatment of normal PBMCs with 10 pM
DPMBC for 2 days did not reach 50% inhibition.
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Figure 3. DPMBC induces DR5 expression and the extrinsic apoptotic pathway. (A) HL-60 cells were treated with 0.1% DMSO as a negative control,
etoposide (Eto; 1 uM), or DPMBC (10 uM) for 24 h. After treatment, proteins were extracted and analyzed by western blotting. (B) Quantitative
analysis of the proportion of Annexin V-positive and PI-negative apoptotic HL-60 cells treated with DPMBC and/or caspase inhibitors. *p<0.05

vs. DPMBC (8 uM).

DPMBC induces nuclear and chromatin fragmentation.
Using HL-60 cells, we next investigated the cellular
phenotype induced by DPMBC. Fluorescence microscopy of
DAPI-stained cells showed that DPMBC induced nuclear
fragmentation, which was identical to the morphological
changes induced by etoposide, a known apoptosis inducer
(Figure 2A). Both DPMBC and etoposide treatment also
induced chromatin fragmentation, as shown by DNA
laddering, in HL-60 cells (Figure 2B).

DPMBC induces DR5 expression and activates the
extrinsic apoptotic pathway. Next, we explored
mechanisms underlying the anti-proliferative effects of
DPMBC. Using western blot analysis, we found that
DPMBC up-regulated DRS expression in HL-60 cells
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(Figure 3A). The level of DRS5 protein was also increased
by treatment with etoposide, a known inducer of DRS5 and
apoptosis. DPMBC induced the cleavage of PARP,
caspase-3, -7, and -8, and lamin A/C proteins in HL-60
cells. Whereas etoposide induced release of cytochrome ¢
from mitochondria to the cytoplasm, no cytochrome c
release due to DPMBC treatment was observed (Figure
3A). These results suggest that DPMBC mainly induces
the extrinsic apoptotic signaling pathway, whereas
etoposide induces apoptosis via both the mitochondria-
dependent intrinsic and extrinsic pathways. We also
confirmed that the pan-caspase inhibitor ZVAD-FMK
efficiently blocked induction of apoptosis and the specific
caspase-8 inhibitor significantly attenuated apoptosis
induced by DPMBC (Figure 3B).
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Figure 4. Knockdown of DR5 reduces apoptosis induced by DPMBC. (A) Western blot analysis of DRS in PC-3 cells treated with or without DPMBC
with DR5 knockdown (siDR5) or without (siLacZ). (B) Quantitative analysis of the proportion of Annexin V-positive and PI-negative apoptotic HL-
60 cells treated with or without DPMBC with DR5 knockdown or without. *p<0.05 vs. DPMBC (10 uM).

Up-regulated DR5 mediates apoptosis induced by DPMBC.
Finally, we performed knockdown of DRS5 in PC-3 cells to
examine whether DPMBC treatment induced apoptosis
through DR5. We found that treatment with siRNA targeting
DRS efficiently blocked the up-regulation of DRS seen with
10 uM DPMBC (Figure 4A), and confirmed that the DRS
knockdown partially but significantly reduced apoptotic
induction by DPMBC in PC-3 cells (Figure 4B). These
results indicate that DRS, at least in part, mediates the
activation of the extrinsic apoptotic signaling pathway by
DPMBC treatment.

Discussion

In the present study, we report for the first time that DPMBC
induces apoptosis in HL-60 and PC-3 human malignant cells
via DRS5 up-regulation. While etoposide activates both the
extrinsic and intrinsic apoptotic signaling pathways, DPMBC
mainly activates the extrinsic apoptotic pathway. Our
knockdown experiments demonstrated the significance of the
DRS up-regulation, which involves apoptosis induction as a
mechanism of action for DPMBC.

DRS5 was originally identified as a p53 downstream target
gene (23). In HL-60 and PC-3 cells, however, the pS3 gene
is defective, thus suggesting that DPMBC up-regulates DR5
in a p53-independent manner. Indeed, in addition to p53
activation, several mechanisms of DR5 modulation have
been reported, including regulation by the transcription
factors SP1, CHOP, YY1, and NF-kB (24) and by epigenetic
regulation (25, 26). It has been reported that DR5 can be up-
regulated by a number of therapeutic agents including
conventional chemotherapeutic drugs. Although the precise
mechanisms underlying DR5 up-regulation by DPMBC

remain to be elucidated, we observed DNA damage as
detected by histone H2AX phosphorylation (data not shown).
Given that (-)-zampanolide binds to the taxane-binding
pocket of B-tubulin and stabilizes microtubules (7, 8), it is
assumed that DPMBC induces microtubule stabilization and
DNA damage via aberrant mitosis. Further investigation is
now required to fully elucidate the mechanism.

Since the ligand of DRS5, TRAIL, is induced specifically
in cancer cells, DR5 agonists are now being tested as
potential cancer therapeutics in clinical settings (27, 28).
Although the efficacy of the strategy is currently limited due
to resistance to the therapy of cancer cells, up-regulation of
the target molecule DR5 by DPMBC could be beneficial for
sensitization to DR5 agonist therapies.

In summary, we report that DPMBC is a novel DRS and
apoptosis inducer in cancer cells. DPMBC may be useful to
potentiate cancer therapeutics using DR5 agonists to induce
apoptotic cell death in cancer cells.
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