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Abstract. Background/Aim: Patients with metastasized
melanoma have limited treatment options and poor diagnosis.
Therefore, the development of treatments requires a new
therapeutic approach, of which gene therapy using rAAV
vectors can be proposed. The aim of the study was to examine
the efficiency of the rAAV vector to transduce mouse
melanoma cells both in vitro and in vivo. Materials and
Methods: Different rAAV serotypes encoding GFP under the
control of both chicken beta-actin and cytomegalovirus
promoters were used in the experiments. Intranasal,
intraperitoneal, intravenous and intratumoral pathways of
administration of rAAV vectors were tested using quantitative-
PCR and immunohistochemical staining. Results: The highest
transduction efficiency in metastatic cells in vivo was observed
7 days after intranasal administration of a 1 00 gc/0.03 ml
dose of rAAV/IDJ-CAG. Conclusion: Melanoma gene therapy
based on rAAV vectors is a possible treatment option.

Melanoma is a tumor that derives from pigment cells —
melanocytes, which develop from the neural tissue of
integuments. The most common starting point of melanoma is
the skin, but it may also be formed within the mucous
membranes of the gastrointestinal tract or in the eyeball. It is a
cancer with a high potential for metastasis (1, 2). Despite the
progress in anti-cancer treatment, the number of deaths due to
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metastatic melanoma is still increasing and from the beginning
of 2019 circa 7,000 patients in the USA died of it (1). Its
aggressiveness causes as much as 90% of deaths among all skin
cancers (3). The median survival of patients with melanoma
who have distant metastases is shorter than 1 year (4). In the
initial stage, the disease is curable, but unfortunately in the
advanced stage, when metastasis occurs, it is practically
incurable (5). The treatment, which has so far been proposed
for the advanced stage, does not provide the desired benefit and
the survival of these patients remains unsatisfactory. For
instance, the annual survival rate after treatment with targeted
therapy for the dual BRAF/MEK mutation is only about 50-60%
(4, 6). Therefore, one of the future therapeutic approaches in the
treatment of metastatic melanoma can be gene therapy using
rAAV vectors, especially with the use of hybrid serotypes,
which can achieve high efficiency of gene delivery (7-9).
AAV viruses are non-pathogenic, small (approx. 25 nm in
diameter) and infect both dividing and non-dividing cells. A
distinguishing trait of rAAV is also the occurrence of various
serotypes, which are characterized by strong tropism to
selected cell types, making them ideal candidates for gene
therapy (10). rAAV viruses have become increasingly popular
in clinical trials (11, 12). In recent years, two pharmaceutical
products using rAAV vectors — Glybera (13) and Luxturna
(14) have been registered. Recent studies conducted on
hybrid/mosaic serotypes have shown a greater transduction
efficiency and are more heterogeneous, both in cellular and
tissue specificity (15). The new rAAV vectors are created by
a number of innovative techniques, including site-directed
mutagenesis, Cry-Em and a recent novum — the CRISPR
method (16). With the CRISPR method it is possible to edit a
genome (17), modulate gene expression (16-18) or to
distinguish different nucleic acids of various Zika viruses (19).
CRISPR is an innovative method that can be used for
breakthrough discoveries and can serve as a tool for imaging
live cells. First of all, its application is intended for the
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treatment of cancer (20, 21), cardiological diseases (22, 23),
haematologic diseases (24), muscular dystrophy (25-27), and
therapy at the level of human embryos, where it can be used
to repair mutations (28, 29). Moreover, this method is also
applied to improve the delivery of genes to cells with the use
of TAAV vectors, which are an interesting group of carriers
used in gene therapy (30-32). Genetic modifications of viral
vectors using e.g. the CRISPR method, are intended to
increase and improve the efficiency of the rAAV vector
transduction. These methods, by manipulating the capsid
surface, make it possible to avoid Nab neutralising antibodies,
so that genes can be delivered more efficiently to cells (10).

Hybrid serotypes are known to be one of the strategies for
improving gene delivery to cells (33). Grimm et al. have
published a rAAV/DJ construct that seems to be a carrier with
an increased ability for cancer cell transduction. rAAV/DJ is a
serotype formed by the intersection of eight different wild AAV
serotypes by combining the capsids of these vectors (34). Thanks
to these modifications, the rAAV/DJ vector exhibits a wider
range of tropism and better transduction efficiency. In addition,
it is less immunogenic compared to other rAAV vectors, because
it has the ability to avoid neutralising antibodies (34-36).
Therefore, the rAAV/DJ vector is a promising carrier that can be
used for the treatment of cancers e.g. in cancers that metastasize
to the lungs, including melanoma (7, 37, 38).

In modern times, non-invasive systems for gene delivery are
sought (39-41). A promising route of administration has been
suggested to be intranasal administration, where in recent years,
has been shown to be a biopharmaceutically privileged, readily
accessible and susceptible area when it comes to the
administration of medications and, importantly, construct
vectors based on adenoviruses and adeno-associated viruses, but
also on others, e.g. herpes virus and lentivirus (42). The
intranasal route has been used in many studies as a favorable
route of administration (43-45), and is particularly beneficial in
providing medication to the bronchus (46-50). Zahoor et al.,
Justo et al. and others have suggested that lung diseases can be
treated by inhalation (51-55). Santry et al. have shown that the
intranasal route can serve to supply rAAV vectors directly to the
lungs (40). The intranasal route can also be used to deliver
medicines to other organs. For example, the beneficial use of
this route of administration is inter alia: administration of insulin
in the treatment of Alzheimer’s disease (56-58), eye medications
including erythropoietin, which saves photoreceptors in the
degenerative retina (59), migraine treatment (60), epilepsy (61)
and depressive diseases (62). The intranasal route of
administration allows us to achieve both local and systemic
effects (63). Therefore, intranasal administration is considered
an alternative non-invasive route of administration of
medications, including gene preparations, which can produce a
therapeutic effect with very high efficacy (64).

In our experiments, we used rAAV vector serotypes
rAAV2/1-rAAV2/9 and rAAV/DJ. The tests were conducted
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with the rAAV under the control of both the cytomegalovirus
(CMYV) and the CMV early enhancer element, and chicken
beta-actin (CAG) promoters encoding a GFP reporter gene.

The purpose of this study is directly linked to the
determination of the suitability of molecular marking B16-F10
cells with the use of rAAV vectors both in vitro and in vivo. The
efficacy of mouse melanoma cell transduction was evaluated
with the use of a fluorescence microscopy, qPCR, Countess 11
FL Automated Cell Counter, immunohistochemical staining and
ELISA. Our research showed the usefulness of rAAV vectors
for the delivery of reporter genes into mouse metastasized cells,
through the intranasal, intraperitoneal, intravenous, and
intratumoral routes of administration. The highest infection
efficiency was observed after intranasal administration of the
rAAV vector, the rAAV/DJ serotype. These discoveries
underline the efficient administration of selected rAAV vectors
to melanoma cells.

Materials and Methods

rAAV vectors. Recombinant AAV vectors were purchased from
VECTOR BIOLABS (Malvern, PA USA). We used serotypes rAAV 1-
rAAV6, rAAV8-rAAV9 and rAAV/DJ vectors. This rAAV serotype
virus expresses eGFP (enhanced Green Fluorescent Protein) under the
control of the CMV or a hybrid of the CMV early enhancer element
and chicken beta-actin promoter (CAG). Titer of the original stocks:
1x1013 ge/ml.

Cell lines. Two cell lines were used: the mouse melanoma line: B16-
F10 (ATCC® CRL—6475TM, Manassas, VA, USA) and the mouse
fibroblast cell line: NIH/3T3 (ATCC® CRL-1658"") used as a
control. The cell lines were maintained in the Dulbecco’s Modified
Eagle Medium (Gibco® BRL, Life Technologies™ , Waltham, MA
USA) supplemented with 10% fetal bovine serum (Lonza,
Biowhittaker, Walkersville, MD, USA) and the antibiotic/antimycotic
solution (AAS) (Gibco®Life Technologies™). The cells were
maintained under standard conditions (at 37°C and in a humidified
5% CO, atmosphere).

Cell transduction procedure. B16-F10 and NIH/3T3 cells were seeded
on 6 cm diameter dishes at the density of 5x10% and 1x105,
respectively. After 24 h, complete media (DMEM with 10% FBS)
were changed to DMEM with 2% FBS. rAAV vectors were moved
from —80°C to room temperature, and underwent a gentle vortex and
a short spin. Then, they were added to cells with a multiplicity of
infection (MOI) of 40,000. The DMEM was replaced every 48 h.
Seven days later, the efficiency of cell transduction was evaluated
using several methods.

Evaluation of the cell transduction efficiency.

Microscopic image analysis. Imaging of the cells after transduction
was performed using the inverted fluorescent microscope Olympus
IX53, with the 10x objective in both the Brightfield (BF) and
fluorescent light (FITC). Editing of images was performed with an
Olympus cellSens2010 software.

Countness™ II Automated Cell Counter (ThermoFisher). Media were
removed, cells were rinsed with PBS and trypsinized (Trypsin-EDTA



Czajka et al: rAAV/DJ-CAG to Metastatic Melanoma

A | 3x10°B16F10cells

checking the presence
of metastatic melanoma cells
to the lungs

IN P
101%gc AAV / l 101%c AAV
IN, IP NaCl

of AAV tr: ion efficiency

7 days

B [3x105B16F10cels

checking the presence
of cutaneous melanoma

lPr:a?ntl/
v
1010gc AAV / l

IV, IT NaCl

- o e

7 days

101%gc AAV

> of AAV tr:

Figure 1. Diagram showing the administration of rAAV vectors to B16-F10 melanoma tumor-bearing C57BL/6J mice. A: melanoma model with lung
metastasis that used intranasal (IN) and intraperitoneal (IP) administration of rAAV vectors, B: melanoma skin model that used intravenous (IV) and

intratumoral (IT) administration of rAAV vectors.

Solution 1x, Sigma—Aldrich®, Saint Louis, MO, USA). After 4 min of
incubation at 37°C, the cells were harvested and 4 ml of DMEM was
added. Ten pl of the suspension was then applied to the cell counting
slide (EVE™ Cell Counting Slides, NanoEnTek), the appropriate
profile was selected (with the use EVOS LED Light Cube GFP:
ALexaFluor488) and the cells showing GFP expression were counted.

Enzyme-linked immunosorbent assay. After transduction, total protein
was isolated using the RIPA buffer composition (Tris Cl pH 7.5 10
mM, NaCl 150 mM, NP40 1%, sodium deoxycholate 0.5%, SDS
0.1%, water), containing a protease inhibitor cocktail (Sigma-
Aldrich®). For the determination of GFP protein concentration in cells
after transduction, an enzymatic immunoassay (GFP ELISA Kit,
AKR-121, CELL BIOLABS, INC., San Diego, CA, USA) was used.
Total protein was diluted 1:100 and then GFP was determined
according to the manufacturer’s protocol. The standard curve was
prepared using the dilution series of recombinant GFP standard, in
the concentration range of 0 ng/ml to 2 ng/ml in Assay Diluent,
included in the GFP ELISA Kkit.

qPCR. After transduction of the rAAV vectors, total DNA from B16-
F10 and NIH/3T3 cells was isolated according to the manufacturer’s
protocol, in the High Pure Viral Nucleic Acid Kit (Roche Life Science).
qPCR was performed on the StepOnePlus Real Time PCR System
(Applied Biosystems®) using the Tagman® Universal Master Mix II,
with UNG (Applied Biosystems®), and probe/primer sets were
designed to recognize the ITR sequence. Reverse: 5’CGGCCTCA
GTGAGCGA3’, Forward 5’ GGAACCCCTAGTGAT GGAGTT3’ and
probe 6-FAM-CACTCCCTCTCTGCGCGC-TAMRA (65). A dilution
series of the calibration curve using pAAV-IRES-hrGFP (Agilent
Technologies, Santa Clara, CA, USA) was used to quantitatively
evaluate the copy number of the ITR sequence present in tissues and
cells. The standard curve included a range between 10 and 1010
molecules. All samples were analysed in triplicate using 50 ng total
DNA/sample.

Gene expression. Total RNA from B16-F10 and NIH/3T3 cells was
isolated using TRI Reagent Solution™ (Invitrogen™ ). Reverse
transcription was performed using the High Capacity RNA-to-cDNA

kit (Applied Biosystems™) according to the manufacturer’s
instructions. Gene expression was investigated with TagMan® Array
96-WELL FAST Plates (Applied Biosystems™): mouse lipid
regulated genes (cat no: 4415461) and mouse ABC transporters (cat
no: 4418752). All samples were analysed in duplicate using 100 ng
total RNA/sample. The relative gene expression was calculated using
the AACq method. The results were analyzed using the
ExpressionSuite Software v 1.1.

In vivo gene transfer experiments

Animals, B16-F10 cells, rAAV vectors. C5TBL/6] mice of both sexes,
aged approximately 8-10 weeks, obtained from the Mossakowski
Medical Research Centre, Polish Academy of Sciences, were used.
The animals were bred at a temperature of about 21°C, with free
access to food and water, and on a 12 h/12 h day/night cycle, in the
animal laboratory of Center for Preclinical Research and Technology,
Medical University of Warsaw. The experiments were performed after
obtaining the approval of the WUM Ethical Committee (consent no.
60/2013). The scheme of the experiment is shown in Figure 1.

In our studies, a metastatic and a localized mouse melanoma
model were used (Figure 1). The B16-F10 cells were maintained in
standard conditions, supplemented with 10% FBS. Cells were
introduced to C57BL/6J laboratory mice. Melanoma cells at the
density of 3x105/0.1 ml PBS/mouse were administered intravenously
(Figure 1A) or subcutaneously (Figure 1B). The selected mice also
received B16-F10 cells, which were previously subjected to rAAV in
vitro transduction (Figure 1). Seven days after administration of
melanoma cells, the mice were checked for the presence of dermal
melanoma (Figure 1B), while after 14 days they were checked for
lung metastasis (Figure 1A). The presence or not of tumors
determined the further experiments. rAAV vectors were transduced to
the animals. Based on the in vitro studies, rAAV vectors with the
highest efficiency of transduction in mouse melanoma cells were
selected. For this purpose, 0.03 ml and 0.1 ml of vector formulations
were made containing rAAV vectors of the titer 1010 copies (Figure
1A and B). The control animals were administered 0.03 ml and 0.1
ml of 0.9% sodium chloride solution.

Preparation for intranasal administration: A gene formulation
containing 1010 gc of the rAAV vector at the total volume of 0.03 ml
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was administered directly into the nasal cavity, by dropping it into the
nostrils using pipettes and sterile tips. Mice spontaneously and
passively inhaled the gene formulation administered to them (Figure
2). Seven days after the administration, the animals were sacrificed
in order to collect pulmonary tissue and other organs, to estimate the
biodistribution of rAAV vectors after using the intranasal route of
administration.

Preparation for intraperitoneal administration: Properly prepared
1010 gc of rAAV vectors at the total volume of 0.1 ml were given
directly into the peritoneal cavity (Figure 1A). Seven days after the
administration, the animals were sacrificed to collect pulmonary
tissue and other organs to estimate the biodistribution of rAAV
vectors via the intraperitoneal route of administration.

Preparation for intravenous administration: 1010 gc of rAAV
vectors at the total volume of 0.1 ml were administered directly to
the caudal vein of the laboratory mice (Figure 1B). Seven days after
the administration, the animals were sacrificed to collect cutaneous
tumors and other organs, to estimate the biodistribution of rAAV
vectors via the intravenous route of administration.

Preparation for intratumoral administration: A total of 1010 gc of
rAAV at the total volume of 0.1 ml was administered directly to the
tumor (Figure 1B). Seven days after administration, animals were
sacrificed in order to collect cutaneous tumors and other organs, to
estimate the biodistribution of rAAV vectors via the intratumoral
route of administration.

Transduction of B16-F10 cells with rAAV/DJ-CAG: Melanoma cells
were prepared according to the cell transduction procedure protocol
(see Materials and Methods). The efficiency of the transduction was
analysed 7 days after rAAV transduction, to determine whether at
least 80% of GFP positive cells were administered to the laboratory
mice at the density of 3x103/mouse. The transductants developed in
this way were then administered subcutaneously or intravenously to
produce metastatic melanoma in the lungs. After 7 days, in the case
of intradermal administration and after 14 days in the metastatic
model, tissues were collected to estimate the transduction efficiency
(Figure 1).

Immunohistochemistry. Immunofluorescence analysis was used to
assess the efficiency of transduction in B16-F10 cells. The study used
C57BL/6] laboratory mice with melanoma and lung metastases,
which were administered rAAV gene formulations via the intranasal
or intraperitoneal route (Figure 1A). Seven days after administration
of rAAV vectors, the animals were perfused with PBS (100 ml of
PBS per 100 g of body weight) and 4% paraformaldehyde (PFA, 100
ml per 100 g of body weight). Then, organs were dissected and
transferred to 4-8°C overnight. Next, tissues were immersed at 4-8°C
in 30% sucrose three times for about 72 h. After that, organs were
frozen in dry-ice-cold heptane, cut in a cryostat (Leica CM1950) into
15 slices and mounted on slides (ThermoScientific, SUPERFLOST®
PLUS). For immunohistochemical staining, slices were incubated in
normal donkey serum (Abcam, ab7475) in PBS containing 0.3%
Triton X-100, for 1 h at room temperature (RT), in a humid chamber.
Next, the primary antibodies were added: anti-GFP (Abcam, ab5450;
1:500) and anti-melanoma (Abcam, ab137078; 1:500) for 1 h at RT
and then transferred to a refrigerator for 24 h. After 24 h, the slices
were rinsed with PBS containing Triton X-100 (Sigma-Aldrich®), and
then incubated with secondary donkey anti-rabbit antibody (Abcam,
ab150075; 1:500) and donkey anti-goat antibody (Abcam, ab175704)
at RT for 1.5 h. After washing with PBS containing Triton X-100
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Figure 2. Intranasal administration of the rAAV gene formulation to
laboratory mice of the C57BL/6J strain.

slices were coversliped. Images were collected using the confocal
laser scanning microscope Olympus FV1000 and analysed with
Fiji/Imagel] (66).

gPCR. Total DNA from animal tissues, collected after administration
of the rAAV vectors, was isolated using the genomic Maxi or Midi
kit (depending on the weight of material used) (A&A Biotechnology,
Gdynia, Poland). qPCR was performed as described above (see
Evaluation of the cell transduction efficiency; qPCR).

Statistical analysis. All results are shown as mean+standard deviation.
Each experiment was conducted at least three times. The results are
presented at the significance level: *p<0.05, **p<0.01 and
**%p<0.001. In all cases, one-way variety ANOVA test was used. The
Statistica 13.1 software was used.

Results

Transduction efficiency of rAAV vectors to melanoma and
fibroblast cells in vitro. B16-F10 melanoma cells and mice
NIH/3T3 fibroblast control cells were transduced using ten
different serotypes of adeno-associated viruses. rAAV vectors
were used in three different MOI=200, 20,000 (both data not
shown) and 40,000. rAAV demonstrated the GFP protein
expression. Serotypes rAAV2/2 and rAAV/DJ were given in
variants containing two different promoters in order to check
whether a particular promoter affects the efficiency of GFP
expression. The transduction efficiency was measured 7 days
after the administration of rAAV vectors using several
methods: a fluorescence microscope with the use of which the
preparations were viewed at 10x magnification in bright light
and fluorescent light, with excitation and emission spectrum
peak wavelengths of approximately 495 nm/519 nm (Figure
3A and B). This allows a visual estimation of the cells that
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demonstrates the protein expression of green fluorescence.
The cells were viewed every two days, until the transduction
efficiency appeared to be increasing over time (data not
shown). Another method used was to measure the percentage
of positive GFP cells using the corresponding AlexaFluor488
fluorescence channel in the Countness™ Automated Cell
Counter (Figure 3C). The highest transduction efficiency for
B16-F10 cells was observed using the mosaic rAAV/DJ vector
under the control of CAG and was on average 81.3% (the
scientific test was conducted in five independent experiments)
(Figure 3C), while the lowest was found for the serotypes
rAAV2/5, rAAV2/8, and rAAV?2/1. Using real-time PCR, the
number of copies of the ITR sequences were determined in
both tumor and control cells (Figure 3G). The qPCR reaction
was used with 50 ng DNA/sample. The largest number of
copies of the rAAV vector were observed in B16-F10 cells
using the mosaic serotype under the control of CAG (with
MOI=40000 the number of copies was about 7.4%107/50 ng
DNA/sample). The highest transduction efficiency in B16-F10
cells was also observed using enzyme-linked immunosorbent
assays with approximately 8x10° pg GFP/ml (Figure 3E).
Statistically significant differences were noted between hybrid
serotypes and the regular vectors (¥***p<0.001) as shown in
Figure 3D, F and H, where the dark grey color indicates the
presence of statistically significant differences between the
B16-F10 cells transduction performances and the light grey
indicates the absence of statistically significant differences.

Assessment of the expression profile of lipid regulated genes
in the B16-F10 and NIH/3T3 cells. The expression of lipid
membrane transporters was evaluated. The tests were carried
out in B16-F10 cells and the NIH/3T3 control cells. The 2~
AACQ method was used to assess expression. Only the results
that showed expression below 0.5 and above 2 were used for
analysis. The highest fold change was observed for the genes
Apoe (approx. 10.4) and Insigl (approx. 4.4). A significant
decrease in the expression of Ptgs2 (approx. 0.002), Fads3
(approx. 0.008), Slc27a3 (approx. 0.008), Pla2gh4a (approx.
0.011), AloxI5 (approx. 0.008), Slc16al6 (approx. 0.054),
Slc27al (approx. 0.05), Nrih3 (approx. 0.008) and Fabp5
(approx. 0.032) was observed. The results were normalized to
the GAPDH housekeeping gene.

The expression of lipid regulated genes was also assessed.
The 2-24C4 method was used to assess gene expression. The
control (non-transduced) and transduced B16-F10 cells were
used for the analysis (Figure 4). Differences in fold changes
were observed for a few genes. For example: regarding
Hmgcsl, the use of the rAAV/DJ vector resulted in 1.17-fold
increase in expression while the use of the rAAV/2 resulted in
0.7-fold decrease in expression. In addition, a slight decrease in
the expression of the Gyk gene was noticed only after
transduction with the serotype rAAV2/2 (0.928). Differences in
gene expression were also noticed for other genes: Hmgcr, the

use of the serotype rAAV/DJ slightly increased expression by
1.028, but the use of the serotype rAAV2/2 decreased
expression by 0.81; Stard4, rAAV/DJ decreased expression by
0.382 while rAAV2/2 by 0.974; Slc16a6, expression was
noticed only for serotype rAAV2/2; Sic27al, increased
expression only after transduction rAAV/DJ; Fabp$,
transduction with rAAV/DJ decreased expression by 0.536
while transduction with rAAV?2/2 reduced expression by 0.899;
Apoe, decreased expression by 0.823 upon transductions with
the serotype rAAV/DJ (0.823) but increased expression by
1.320 upon transduction with the serotype rAAV?2/2. In addition,
we were noticed about 7.5-fold changes for the Abcal gene.
The results were normalized to the Gusb housekeeping gene.

The expression of selected ABC transporters was also evaluated
in the B16-F10 and NIH/3T3 cells. The 2~**°4 method was used
to assess gene expression. Only the results that showd expression
below 0.5 and above 2 were used for analysis. As shown in
Table II, individual ABC transporters genes showed decreased
expression. The lowest expression was noticed for the Tap2
(approx. 0.005) and Tapl genes (approx. 0.019). The results
were normalized to the 18S housekeeping gene.

In our study, the expression of mouse ABC transporters was
also assessed. The 2-24C4 method was used to assess gene
expression. The test was performed on the control (non-
transduced) and transduced B16-F10 cells. Fold changes were
observed in a few genes (Figure 5). The highest fold was
observed after transduction with the rAAV/DJ only for Tap2
(approx. 27.4), Tapl (approx. 14.465), and Abcd2 (approx.
13.16) genes. The fold changes were observed for Abcas
(approx. 2.938), Abcd4 (approx. 2.517), Absb9 (approx.
3.878), Abcdl (approx. 2.826) in the case of serotype
rAAV/DJ. Interestingly, the levels of Absb9 were elevated by
approx. 17.663 following transduction with the rAAV2/2. The
elevated level of gene expression was observed for Abcg4,
Abcal, Abca8a, Abcb4, both after transduction with the
rAAV/DJ and rAAV2/2. The results were normalized to the
Hprtl housekeeping gene.

Transduction efficiency of rAAV/DJ and rAAV2/2 serotypes in
Vivo.

In vivo results of rAAV vector transduction are shown in
Figures 6, 7, and 8.

Based on the selection of a rAAV vector of rAAV/DJ-CAG,
which showed the highest tropism in the direction of melanoma
B16-F10 cells in in vitro studies (Figure 3), in vivo studies
were conducted. The B16-F10/rAAV/GFP transductants were
tested. As shown in Figure 6, after subcutaneous administration
of the transductants, the presence of about 1.19x10* copies of
rAAV/50 ng DNA/total sample was found, which was about
10 times less compared to that seen with intravenous
administration. Statistically significant differences were
observed at the level of *p<0.05.
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Figure 4. The relative expression of lipid regulated genes in B16-F10 cells after transduction with the rAAV vectors compared to non-transduced B16-
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Figure 5. The relative expression of ABC transporters in B16-F10 cells after transduction with the rAAV vectors compared to non-transduced B16-F10

cells (defined as 1-fold change).

Based on the in vitro studies, we chose the serotypes with the
highest tropism for mouse melanoma B16-F10 cells. Animal
studies were conducted in three independent experiments. Two
models of melanoma were proposed: metastatic and
subcutaneous. In a model that had been developed in the lungs,
B16-F10 cells, cultured under standard conditions (37°C and 5%
CO,), were administered in the concentration of 3x105 per
mouse/tail vein. After about 14 days, metastases were observed
in the lungs. At that time, we administered rAAV preparations at
a dose of 10' gc/mouse using both the intranasal and
intraperitoneal routes. Seven days after administration, we
collected pulmonary tissue and other organs for assessing the
transduction efficiency and biodistribution of the preparations
(Figure 1A). To evaluate the effectiveness of the rAAV
infections, we used the qPCR method with the pAAV-IRES-
hrGFP vector as a standard curve. The results (Figure 7A and C)
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depict the highest efficiency of the rAAV/DJ vector under
control of the CAG promoter, which was obtained after
intranasal administration of approximately 1.33x10* copies/50
ng DNA/sample and intraperitoneal administration of 5.49x10°
copies/50ng DNA/sample. Intranasal administration (Figure 7A)
was more effective compared to intraperitoneal administration
(**p<0.01). Based on the presented results (Figure 3A, C, E, G),
it can also be concluded that higher transduction efficiency is
observed after introduction with rAAV/DJ and rAAV2/2
containing the CAG promoter. In the model of skin melanoma,
we used both the intratumoral (Figure 7G) and intravenous
(Figure 7E) route of administration of rAAV vectors. After
intravenous administration (Figure 7E) the vectors were
administered at a concentration of 10'° g¢/mouse tail vein. Seven
days after administration of the rAAV vectors, tumors and other
organs were collected to estimate rAAV biodistribution. The
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Figure 6. Increased number of rAAV copies in the tumors after
B16/F10/rAAV/IDJ-CAG-GFP intravenous (iv) or subcutaneous (s.c.)
administration.

greatest transduction efficiency was observed after the
administration of rAAV vectors directly to the tumor tissue and
was approximately 1.13x10% copies/50 ng DNA/sample (Figure
7G), which confirms in vitro results. Based on the in vivo studies,
we demonstrated the highest efficiency of the rAAV/DJ under
control of the CAG promoter using all routes of administration.
The most effective was intranasal delivery of rAAV to melanoma
cells in the lungs (Figure 7A). The control laboratory animals
were administered 0.9% NaCl. Results are not presented because
no copies of the ITR sequence were observed.

Mice received 1010 genome copies of rAAV by intranasal or
intraperitoneal administration. GFP expression was assessed in
metastatic lung cells at 7 days after vector administration by
anti-GFP immunohistochemical analysis. Immunohistochemical
staining was used to estimate the presence of rAAV vectors.
Antibodies were used against both lung metastatic melanoma
cells (see tumor marker) and against the GFP protein (see GFP
immunodetection). As shown in Figure 8, GFP protein
expression was observed in metastatic melanoma cells only
when rAAV/DJ was administered by both the intranasal and
intraperitoneal route.

It is interesting that the highest transduction efficiency in
the lung tissue in in vitro conditions was recorded after the
intranasal administration of the rAAV/DJ serotype (this is also
shown in Figure 7). In Figure 8 we can also observe a stronger
effect of the CAG promoter on melanoma cell metastases to
the lungs.

Discussion

Melanoma is an aggressive malignant tumor formed by the
uncontrolled growth of melanocytes. It is one of the deadliest
forms of skin cancer. The most common location of melanoma

Table 1. The relative expression of lipid regulated genes in B16-F10
cells compared to NIH/3T3 cells (defined as 1-fold change).

Gene Increased expression Decreased expression
(fold change) (fold change)
Ptgs2 0.002
Hmgcesl 0.456
Gyk 0.108
Fads3 0.008
Abcal 0.113
Slc27a3 0.008
Stard4 0.401
Insigl 4.397
Pla2gh4a 0.011
Alox15 0.008
Slc16al6 0.054
Acadvl 0.258
Slc27al 0.05
Fadsl 0.274
Nrlh3 0.008
Hadhb 0.286
Ppard 0.375
Fabp5 0.032
Scdl 0.32
Apoe 10.372

Table II. The relative expression of ABC transporters genes in B16-F10
cells compared to NIH/3T3 (defined as 1-fold change).

Gene Increased expression Decreased expression
(fold change) (fold change)
Abca7 0.130
Abca3 0.253
Abcd3 0.258
Abcas 0.180
Abcd4 0.320
Tap2 0.005
Abccs 0.269
AbcclO 0.105
Abccl 0.382
Abcb10 0.145
Abcf2 0.859
Abca2 0.526
Tapl 0.019
Abcdl 0.167
Abcg2 0.269
Abcfl 0.715

is the skin, but it shows relatively high tendencies to
metastasize outside the original location (67). The prognosis
of patients with metastases to the lungs is particularly
unfavorable and the survival rate of patients is very low (68,
69). For this reason, innovative solutions are being sought for
the treatment of melanoma metastases to the lungs.
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In modern times, one of the promising and alternative
approaches to the treatment of many diseases, including cancer,
is gene therapy. One of the gene therapy strategies used in
cancer, including a form that metastasizes to the lungs, is the
administration of viral vectors carrying therapeutic genes
through the intranasal route (39). It is a promising method of
treatment (administration) and for the identification of cancer
cells in the lungs. Its additional advantage is the high safety of
administration and the selectivity of gene transfer directly to
bronchial tree cells (40, 70-73). The success of gene therapy is
determined by the safe and effective introduction of a
therapeutic transgene into cells (74). One of the current
methodological challenges is the selection of an appropriate
vector that, when introduced to the target cell, will have a high
transduction efficiency (75). Scientists have been constantly
working on developing appropriate gene carriers that will
produce the desired results and meet the challenges associated
with gene delivery (74). To date, viral vectors are the most
common vectors for gene transfer. Their high transduction
efficiency of cells has been determined. However, they can
sometimes be problematic when it comes to their use in clinical
trials, due to their immunogenicity and toxicity (69, 75, 76).
Among the viral carriers, great interest has been shown for
adeno-associated viruses, rAAV, due to their high safety profile.
They can be used for gene therapy of metastatic lung tumors
such as melanoma, which has been shown in post-mortem
analysis that in as much as 70% of cases metastasizes to the
lungs (38, 77). In our studies, rAAV/GFP vectors were used to
identify the melanoma cells that metastasize to the lungs. The
tests were conducted in both in vitro (Figures 3, 4, and 5) and
in vivo conditions (Figures 6, 7, and 8). The experiment diagram
is presented in Figure 1. In the analysis of the transduction
efficiency, several rAAV serotypes were used in in vitro
cultures, as well as in in vivo conditions in two melanoma
models: skin and metastatic. It was established that B16-F10
cells were transduced both in in vitro and in vivo conditions
with the highest efficiency by using the rAAV/DJ-GFP serotype.
Most likely, this is related to the construction of the capsid. It
is known that the construction of individual vector capsids
affects the efficiency of gene transfer to cells, as has been
indicated in previous studies (12, 33-36). The high transduction
of mouse melanoma cells of approximately 80% (Figure 3C)
that was demonstrated in this work may suggest that there are
specific characteristic rAAV receptors on the surface of B16-
F10 cells. In the studies of Tsoukalas ef al. in B16-F10 cells,
the presence of receptors such as sialic acid (78), heparin sulfate
(79), gangliosidine (80), FGFR (81), VEGFR (82) and aV[35
integrins (83) has been demonstrated. The rAAV/DJ vector
consists of rAAV2, rAAV4, rAAVS, rAAVS, rAAV9 and avian,
bovine and goat serotypes (34). Szmidt et al. have described
one of the vectors that belongs to AAV/DJ- BAAV (84). In their
studies, they have shown that the main receptor for BAAV is
the ganglioside receptor. This receptor is also present on the
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surface of B16-F10 cells (80), and a higher transduction
efficiency was observed in these cells as compared to mouse
fibroblast cells. As reported by Fishmann et al. there are no
gangliosides on the surface of NIH/3T3 cells (85). In our
experiments, the transduction efficiency of NIH/3T3 cells was
almost imperceptible (Figure 3). An additional advantage that
can result in such high transduction in mouse melanoma cells
is the presence of serotypes that infect B16-F10 cells using
HSPG and sialic acid (respectively rAAV2, rAAV4 and rAAVS
serotypes) (86-88). In addition, caprine AAV capsid is 94%
similar to the TAAVS capsid, and has also high transduction
efficiency in the above-mentioned cells (89). Van Lieshout et
al. have indicated the presence of a proteoglycan receptor for
laminine, which in the context of our research may explain the
increase in the transduction of B16-F10 cells by the hybrid
serotype rAAV/DJ in vitro (Figure 3) and in vivo (Figures 6, 7
and 8) (72). Effective design of gene therapy involves not only
the selection of the right vector, but also the selection of the
right promoter. In the rTAAV construction, common promoters
are used, which include, among others, CMV, EFla, SV40 or
CAG (90). In our research, we focused on the use of CMV and
CAG promoters. The choice of a promoter is extremely
important in targeted gene therapy and, thus, in the
individualization of treatment (90-92). We noticed that
improved transduction efficiency in melanoma cells in in vitro
and in vivo conditions was obtained by the CAG promoter
(Figures 3, 7, and 8). This may be related to published
observations that some promoters are silenced in certain cell
types (93). The importance of choosing the right promoter has
also been shown by Grey et al., where the CMV promoter,
compared to CAG, was silenced in the central nervous system
cells (93). These studies noted that the CAG promoter is a
stronger promoter in CNS cells and other cell types. The fact
that the CAG promoter is more efficient as compared to other
promoters has also been noted in the study of Alton ef al., were
the promoter’s impact on the efficiency of transduction was also
demonstrated (94). In that study, the authors also showed the
importance of the route of administration and its effect on the
transduction of several cell types.

Figure 7. Transduction efficiency of the rAAV/DJ and rAAV2/2 vectors
driven by the CAG and CMV promoters. The results are shown as
meanzstandard deviation. Statistically significant differences were
observed between particular serotypes; at the significance level
*##p<0.01. (A and C) results show the transduction efficiency of the rAAV
vectors in the lung metastatic melanoma, including intranasal (A) and
intraperitoneal (C) route of administration. (E and G) results present
transduction efficiency in cutaneous tumors (E) using the intravenous
route of administration and the intratumoral (F) route of administration.
(B, D, F, H) results show the biodistribution of particular rAAV vectors
to mice organs.
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The results of the in vitro transduction efficiency are
presented in Figure 3, which shows that the transduction
efficiency of B16-F10 cells measured using the Automated
Cell Counter (Figure 3C) for the rAAVI1-rAAV6 and rAAV9
vectors does not coincide with the number of copies of the
ITR sequence measured using the gPCR method (Figure 3G).
Such results may be the result of degradation by the ubiquitin-
proteasome (36). Therefore, the qPCR method may show the
number of copies for each serotype (Figure 3G), but the
expression of the GFP protein in the cells can be decreased as
presented in Figure 3A, C and E. It is interesting that the
rAAV/DJ vector showed high transduction efficiency both
using the positive GFP cells measurement method (about
80%) (Figure 3C) and the qPCR method (approx. 7x107
genome copies) (Figure 3G). For this reason, scientists are
considering vectors that can avoid degradation within the cell
and demonstrate effective expression. A positive candidate is
the hybrid vector rAAV/DJ, which can avoid degradation by
the proteasome by bypassing phosphorylation and then
ubiquitination as has been shown by Mao et al. (36). The
rAAV transduction efficiency also depends on the intracellular
factors described by Nonnenmacher et al. among which we
can mention, inter alia, membrane cholesterol, actin, Cdc42,
Arfl, GRAFI1, Rab proteins, PLA2, CLIC/GEEC pathway and
others (95). In our research, the expression of lipid genes and
ABC transporters was assessed. Fold change results are shown
in Table I, Table II, Figures 4 and 5. On the basis of the results
gathered in Table I, increased fold changes in the expression
of the genes Insigl (approx. 4.4) and Apoe (approx. 10.4) in
B16-F10 cells was observed compared to NIH/3T3 cells.

A potential increase in the expression of the Insigl gene
may promote increased rAAV transduction through increased
cholesterol synthesis. As it has already been mentioned by
Nonnenmacher et al., the amount of membrane cholesterol
may indirectly promote increased infection by viral vectors
(95). Zhang et al. have shown the relationship between
increased expression of the Insig/ gene in HIV-1 infection
(96). These studies showed that virus infection regulates sterol
synthesis as a strategy to facilitate viral replication.

In addition, an increase in the expression of the SREBFI gene
in cells after transduction (Figure 4) was observed, which was
related to the Insigl gene (Figure 9). This gene plays a key role
in binding to the sterol regulatory elements of about 30 genes
needed to capture and synthesize cholesterol and fatty acids (96).
Its increase in expression may promote the internalization of
rAAV vectors in B16-F10 cells compared to the NIH/3T3
control cells (Table I). Liu et al. have also observed an increase
in Insigl expression before virus infection (97).

In addition, in non-transducted B16-F10 cells an increase
in the rate of the Apoe gene (Table I) compared to NIH/3T3
cells was noted. Siddigui et al. have shown that the increase
in the expression of this gene can affect the growth of cell
infections by HIV by increasing its production (98). This was
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related to an increase in the location of viral envelope proteins
on the surface of cells. As has been shown by Siddigui et al.,
a decrease in Apoe expression may cause vector degradation
in lysosomes (98). These studies may indicate that mouse
melanoma cells are prone to transduction by the rAAV vector.
Qiao et al. have presented results of silencing of the Apoe
gene (99). Inhibition of its expression causes as much as 90%
decrease in infection by HBV virus in liver cells. It is
speculated that Apoe can play a role in HBV’s persistent
infection by avoiding the host’s immune response. On the
other hand, the study by Kivela et al. has shown that high
levels of lipoproteins reduce transduction by adenoviruses
(100). Furthermore, Lefevre et al. have shown the relationship
between Apoe and the HSPG receptor, which promotes
infection by the HCV vector (101). Viral vectors use, among
other mechanisms, endocytosis for cell transduction and
proteins, such as clarines, caveolae, dynamine, and Rac, play
a significant role (95).

The relationship between lipid related genes, the proteins
involved in effective transduction and receptors for rAAV are
presented in Figure 10.

Long et al. have suggested that the increase in the
multiplication factor of the Abca I gene (Figure 4, Table I) on
the cell membrane increases infection by rAAV vectors (102).
This is because this gene together with Apoe regulates
cholesterol levels, which can enable the survival of the rAAV
vector in cells. They can probably use cholesterol as the main
component of survival. We noted that the Abcal protein is
associated with proteins that are responsible for the
internalization of the rAAV virus in the cell (Figure 10B). This
may suggest that the transduction of B16-F10 cells with the
use rAAV/DJ vector results in an increase in the expression of
the Abcal gene (Figure 4, Table I), which activates the
proteins responsible for increasing efficiency by the
aforementioned vector. On the other hand, we see an increase
in the multiplication factor of the Slc27al gene in transduced
cells (Figure 4), which is not directly related to the proteins
responsible for the efficient transduction by rAAV (Figure
10A). However, it is responsible for the increase in proteins
transporting fatty acids, which can also be considered a factor
that increases the transduction efficiency e.g. upon the
administration of a next dose. The studies of Arnold et al. and
Aqil et al., which showed an increase in the expression of this
gene after a chickenpox infection and HIV, respectively,
support the validity of our claim (103, 104).

The relationship between ABC transporters, proteins
involved in effective transduction, and receptors for rAAV is
presented in Figure 11.

Based on the analysis of the expression of ABC transporter
genes, as demonstrated in Figure 11, there is no relationship
between the expression of the genes of ABC transporters,
B16-F10 cell receptors for rAAV vectors or for intracellular
proteins promoting efficient transduction.
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Figure 8. GFP-expression in metastatic melanoma cells to the lungs after intranasal and intraperitoneal rAAV delivery. Arrows indicate GFP expression,

which confirm rAAV transduction.

Several in vivo tests were conducted as part of this study.
The results are presented in Figures 6, 7, and 8. Different
routes of administration of viral vectors to estimate the most
favorable marking of B16-F10 cells by a vector encoding
green fluorescence protein were used in the tests. Figure 7A,
7C and 8 show that higher transduction efficiency of B16-
F10/lungs by rAAV-GFP vectors is observed after intranasal
administration (approx. 1.33x10% 2c/50 ng/DNA total/sample
DNA) compared to intraperitoneal administration (5.49x103
gc/50 ng/DNA total/sample). To understand the obtained
results, one can refer to the specific anatomy of the respiratory
system. Thanks to the highly vascularized nasal cavity, it is
possible to quickly and directly introduce drugs, as well as
gene preparations into the lungs (42, 94).

In addition, intranasal administration directs the preparation
directly to the bronchial tree without the first pass effect and
the possible potential loss of genome copies of rAAV vectors

in the body (42-49). Our study indicated that transduction
efficiency is influenced by the vector, promoter and route of
administration as has also been shown by Belur ef al. (64) who
have demonstrated that the CAG promoter is more effective
(64). The expression of CAG promoter in the lungs lasted up
to 12 months while that of CMV expression up to 8§ months.
However, the CMV promoter has an immediate effect that
provides strong but short-term expression (90, 91). However,
it is very susceptible to silencing in some cell types (89). The
effectiveness of the CAG promoter is shown in Figure 3, 7, and
8. The Kurosaki et al. studies support the effectiveness of the
CAG promoter in respiratory cells (91). In their studies, the
AAV6 vector with the aforementioned promoter was
constructed, which effectively infected cells of the respiratory
system. A slightly inconsistent transduction may be recorded
after intranasal administration in case of animals because some
rAAV vectors can stay in the upper respiratory tract and some

4437



ANTICANCER RESEARCH 40: 4425-4444 (2020)

Figure 9. The relationship between lipid regulated genes and proteins present in the cell. Scheme made on the basis of the STRING program. Network
nodes represent proteins: splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a
single, protein-coding gene locus. Node color: colored nodes: query proteins and first shell of interactors. White nodes: second shell of interactions.
Empty nodes: proteins of unknown 3D structure. Filed nodes: some 3D structure is known or predicted. Edges represent protein-protein associations:
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are
physically binding each other. Known interactions: blue: from curated databases, pink: experimentally determined. Predicted interactions: green: gene
neighborhood; red: gene fusions; dark blue: gene co-occurrence. Others: yellow: textmining; black: co-expression; violet: protein homology.

of them get into the digestive system (Figure 7D). For this
reason, we can determine a lower number of copies than the
output number (as shown on Figure 7A); we administered 1010
genome copies of rAAV and detected about 10* copies.

As a result, this may cause a decrease in the expression of
the GFP protein in the lower respiratory tract (Figures 7, 8) as
has also been shown in similar studies by Kurosaki et al. (91).
A significant factor influencing transduction efficiency after
e.g. intranasal administration, as has been mentioned before, is
the way of administration (Figure 2) to laboratory animals,
where the vector enters in a fraction of the cells in an
appropriate way. The apical part of epithelial cells of the
respiratory system is rich in receptors for sialic acid, while the
basal-lateral part in HSPG, therefore one can observe
differences in the efficiency between rAAV/DJ serotype and
rAAV/2/2 (Figure 7A, C) (91). In the case of the rAAV/DJ
serotype, its capsid is rich in amino acid residues recognized
by receptors in both the apical part of the cells and the basal-
lateral part. Therefore, one can observe its higher efficiency
after intranasal administration (Figure 7A, 8) as well as using
the intraperitoneal route (Figure 7C, 8). Santry et al. have
evaluated various methods of administration to the respiratory
tract of laboratory mice (40). Some of the studies have also
examined the route of intranasal administration. They
demonstrated that after intranasal administration, the best
efficiency, consistency and reproducibility in the distribution
of the vector in the lungs was recorded. Depending on the goal
of transduction and the preferred target location, one should
choose the right method of gene administration. Choosing the
right method will make it possible to increase the transduction
efficiency and achieve consistent results. As Santry et al. have
described, the intranasal route is the safest route of
administration due to the absence of inflammatory foci and any
other complications (40). The result may also be influenced by

4438

the volume-dependent distribution of the vector. The
distribution of the vector in the lungs depends on the volume
of the substance delivered to the nasal cavity after intranasal
administration. The study by Santry et al. has shown that the
position in which animals are kept during administration is also
of importance (40). In our experiment, as Figure 2 shows, the
preparation was administered in a volume of 30 pl while the
mouse was held in a vertical position. If mice are held in an
inappropriate way during administration, the delivery of the
vector to the lungs may be ineffective. When comparing Figure
7E and G, one can notice a higher transduction efficiency of
rAAV/DJ vector after intratumoral administration (approx.
1.13x10* gc/50 ng DNA/sample) compared to intravenous
administration (approx. 1x103 gc/50 ng DNA/sample). Local
(topical) high concentration of vector explains the high
transduction of melanoma cells. The rAAV/DJ vector tropism
towards mouse melanoma cells was also confirmed in our in
vitro studies (Figure 3). The presence of antibodies neutralizing
rAAV serotype 2, which automatically decreases its
transduction performance, could be another reason for the fact
that the rAAV/DJ vector is more effective in infecting B16-F10
cells in in vivo conditions than the rAAV2/2 vector (93, 105).
The use of hybrid vectors is becoming increasingly important
due to their unique characteristics such as the lack of immune
system reaction since they possess the ability to avoid
neutralizing antibodies thanks to the construction of their
capsid. For instance, van Lieshout et al. have demonstrated that
the triple mutant capsid of the rAAV6 vector, containing
mutations F129L, Y445F and Y731F is ideal as a candidate for
gene therapy of the the lungs (106).

In conclusion, our research showed high tropism of the
rAAV/DJ vector for mouse melanoma cells both in vitro and
in vivo. The highest efficacy of infection after intranasal
administration was observed towards melanoma metastasizing
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Figure 10. The relationship of proteins between lipid regulated genes and
surface receptors of cells for rAAV vectors (10A) and the relationship of
proteins involved in intracellular transport of rAAV (10B). Scheme is made
on the basis of STRING program (https://string-db.org/). Network nodes
represent proteins: splice isoforms or post-translational modifications are
collapsed, i.e. each node represents all the proteins produced by a single,
protein-coding gene locus. Node color: colored nodes: query proteins and
first shell of interactors. White nodes: second shell of interactions. Empty
nodes: proteins of unknown 3D structure. Filed nodes: some 3D structure
is known or predicted. Edges represent protein-protein associations:
associations are meant to be specific and meaningful, i.e. proteins jointly
contribute to a shared function; this does not necessarily mean they are
physically binding each other. Known interactions: blue: from curated
databases, pink: experimentally determined. Predicted interactions: green:
gene neighborhood, red: gene fusions, dark blue: gene co-occurrence.
Others: yellow: textmining, black: co-expression, violet: protein homology.

to the lungs (Figures 7A, C and 8). Therefore, this research
provides evidence for effective administration of rAAV vectors
to metastatic melanoma cells. Thus, gene therapy and rAAV
vectors can be a new and effective therapeutic strategy for
melanoma and its lung metastases.
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