
Abstract. Background/Aim: 5-Fluorouracil (5-FU) is an
anticancer drug commonly used to treat gastric cancer;
however, continuous 5-FU chemotherapy causes drug
resistance. Materials and Methods: We established five
sublines of 5-FU-resistant AGS gastric cancer cells to
investigate changes that may have occurred in the
development of 5-FU resistance. Drug resistance to other
chemotherapeutic reagents, proliferation, cell-cycle changes,
and wound healing ability were assessed for each subline.
Results: Retarded cell growth, G0/G1 phase arrest, up-
regulation of p57, and down-regulation of cyclin D1 were
commonly observed in all five sublines. Resistance to
paclitaxel and cisplatin was also observed in most of the
sublines. Conclusion: Our data support the notion that G0/G1
arrest due to changes in p57 and cyclin D1 expression may
confer drug resistance, while EMT seems non-essential to 5-
FU resistance in AGS gastric carcinoma cells. 

Gastric cancer (GC) is the fifth most common cancer and
causes the third-most cancer-related deaths worldwide (1).
GC is associated with lifestyle factors such as Helicobacter
pylori infection, unbalanced diet, alcohol consumption, and
smoking (2). Radical surgery and chemotherapy are the
primary methods of treatment for early GC. Patients with
advanced GC who cannot undergo surgery are treated with
neoadjuvant chemotherapy, radiotherapy, and molecular-
targeted therapies. However, most patients diagnosed with
advanced GC show poor overall prognosis even after
treatment because of high metastatic potential and poor
response to chemotherapy (3, 4). 

5-Fluorouracil (5-FU) is an anticancer drug used for many
solid tumor types including gastric and colon cancer (5, 6). 5-
FU, an analog of uracil, is transported into cells by the same
mechanism as uracil. 5-FU inhibits thymidylate synthase,
incorporates into RNA and DNA, and induces cell death
pathways in rapidly growing cancer cells (7-9). However, the
response rate to 5-FU-based chemotherapy is lower than 32%
in advanced GC (10). This low response rate is mainly due to
5-FU resistance caused by several factors including
degradation of 5-FU by dihydropyrimidine dehydrogenase,
increased deoxyuridine triphosphatase activity, and
overexpression of thymidylate synthase, B-cell lymphoma 2
(BCL2), BCL-XL, and BCL2 family member MCL1
apoptosis regulator proteins (7, 11).

Acquisition of 5-FU resistance and subsequent chemotherapy
failure is a common and problematic phenomenon in patients
with cancer (12). Previous studies of 5-FU-resistant GC cells
showed changes in the pathway of 5-FU metabolism, increased
drug transporter protein, and resistance to apoptosis (13, 14). In
addition, epithelial to mesenchymal transition (EMT) was
observed, similarly to other 5-FU-resistant solid tumors (15, 16).
Various drug-resistant cell lines have been established to study
strategies for overcoming anticancer drug resistance. However,
most studies have used only one resistant cell line rather than
comparing multiple cell lines derived simultaneously.

In this study, we established five 5-FU-resistant GC cell
sublines simultaneously and compared their characteristics. 

Materials and Methods

Cell culture and reagents. AGS cells of a GC cell line were cultured
in RPMI-1640 (Gibco BRL, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum (FBS) and antibiotics (100 U/ml
penicillin and 100 μg/ml streptomycin; Gibco BRL). 

Establishing 5-FU-resistant AGS sublines. In order to establish 5-FU-
resistant AGS cells, 10 aliquots of 1×106 cells were seeded into six-
well plates and cultured with increasing concentration of 5-FU from
5 to 100 μM over 6.5 months. Control cells were treated with
dimethylsulfoxide (DMSO) for 6.5 months. Five sublines of the 5-
FU-resistant cells were obtained after 6.5 months and cultured in
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media containing 100 μM 5-FU to maintain 5-FU resistance. The five
AGS sublines that acquired resistance to 5-FU were named AGS/FR1
to -5 and AGS cells that were maintained with DMSO were named
AGS/D. 5-FU was purchased from Sigma-Aldrich (St Louis, MO,
USA). A stock solution of 5-FU was prepared in DMSO, aliquoted,
and stored at 4˚C. 5-FU is used in the range of 300-600 mg/m2 to
treat gastric, breast, and colorectal cancer (17, 18). The plasma peak
level of 5-FU was 100-1000 μM when a single treatment of 300-600
mg/m2 5-FU was administered (19). The half-maximal inhibitory
concentration (IC50) of 5-FU was 70-400 μM in previous reports of
5-FU-resistant cancer cells (20-22). Thus, we used up to 100 μM of
5-FU to establish 5-FU-resistant GC cells in this experiment.

Drug-sensitivity assay. A drug-sensitivity assay was performed to
characterize cells. AGS/FR and AGS/D cells (1-2×103 cells/well)
were seeded in 96-well plates, cultured overnight in humidified air
with 5% CO2 at 37˚C, and then treated with serial dilutions of 5-FU,
paclitaxel (Sigma-Aldrich), or cisplatin (Sigma-Aldrich). After 72 h,
10 μl of CCK-8 solution (Dojindo Molecular Technologies, Tokyo,
Japan) was added to each well. The absorbance at a wavelength of
450 nm was measured after 2 h using a SoftMax apparatus
(Molecular Devices, Sunnyvale, CA, USA). The IC50 was calculated
from the survival curves.

Observation of morphological changes. The morphological
characteristics of the cells were observed using an Axiovert 200 (Carl
Zeiss, Thornwood, NY, USA) microscope. The magnification was
×100.

Quantitative reverse transcription-polymerase chain reaction (qRT-
PCR). Cells were harvested and total RNA was extracted using the
RNAiso Plus (TaKaRa, Tokyo, Japan) according to the manufacturer’s
instructions. cDNA was synthesized using 2 μg total RNA, oligo (dT)
primers (Macrogen, Seoul, Republic of Korea), and M-MLV reverse
transcriptase (Invitrogen). qRT-PCR was carried out using a TOPreal™
qPCR 2x Pre MIX SYBR-Green kit (Enzynomics, Daejeon, Republic
of Korea) with a CFX96 Real –Time PCR System (Bio-Rad, Hercules,
CA, USA). The following primers were used for PCR: E-Cadherin:
forward: 5’-TTCTGCTGCTCTTGCTGTTT-3’, reverse: 5’-TGG
CTCAAGTCAAAGTCCTG-3’; N-cadherin: forward: 5’-ATTG
GACCATCACTCGGCTTA-3’, reverse: 5’-CACACTGGCAAACCT
TCACG-3’; vimentin: forward: 5’-TGTCCAAATCGATGTGGATG
TTTC-3’, reverse: 5’-TTGTACCATTCTTCTGCCTCCTG-3’; glyce-
raldehyde 3-phosphate dehydrogenase (GAPDH): forward: 5’-
ATGGGGAAGGTGAAGGTCG-3’, reverse: 5’-CCATGTAGTTGAG
GTCAATGAAG-3’). PCR conditions were 95˚C for 10 min, followed
by 35 cycles at 95˚C for 10 s, 60˚C for 30 s, and 72˚C for 30 s.
Dissociation curves were checked routinely to confirm specific
amplification of PCR products. For this process, reaction mixtures were
incubated at 95˚C for 60 s and then ramped from 60 to 95˚C at a heating
rate of 0.1˚C/s, with fluorescence measured continuously. Relative gene
expression was calculated according to the comparative Ct method using
GAPDH.

Wound-healing assay. To study differences in migration between
AGS/FR and AGS/D cells, cells (3×104) were seeded into 12-well
plates and cultured to 90-95% confluence. The cell layer was
scratched with a sterile 200 μl pipette tip through the confluent
monolayer and washed with PBS to remove cell debris. The cells
were then cultured in RPMI-1640 medium without FBS at 37˚C in a

humidified chamber with 5% CO2. The scratched wounds were
observed using an Axiovert 200 (Carl Zeiss) microscope just after
scratching and 24 h after scratching. Photographs were captured to
evaluate the level of migration in each group of cells, and wound
areas were assessed using Image J software (National Institutes of
Health, Bethesda, MD, USA). 

Cell growth assay. Cell growth was determined by seeding 12-well
plates with 5×103 cells/well in triplicate and allowing them to grow
for 120 h. Every 24 h, the cells were trypsinized and counted using a
hemocytometer. The doubling time (Td) of each cell line was
calculated according to the formula: Td=Δt×lg2/(lgNt− lgN0); where
N0 was the cell number at the beginning of the experiment, Nt the
cell number at the end, and Δt was the time from N0 to Nt.

Flow cytometric analysis of the cell cycle. Cells were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum for
48 h. The cells were harvested, washed with ice-cold phosphate-
buffered saline, and fixed by dropwise addition of 70% ethanol. The
fixed cells were stained with 50 μg/ml propidium iodide (Sigma-
Aldrich) solution containing 10 μg/ml RNase A (Invitrogen,
Carlsbad, CA, USA). The cell-cycle profile was assessed for 10,000
cells by flow cytometry using a FACS Canto II (Becton-Dickinson,
San Jose, CA, USA). 
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Figure 1. 5-Fluorouracil (5-FU) sensitivity assay of AGS gastric cancer
cells (AGS/D; open symbols) and five 5-FU-resistant sublines (AGS/FR1-
5; closed symbols). Cells were plated in a 96-well plate and treated with
5-FU at concentrations ranging from 0 to 100 μM. After 72 h, CCK-8
solution was added to each well and absorbance at 450 nm was measured
to assess cell growth. The half-maximal inhibitory concentration (IC50)
for 5-FU was calculated. Data are expressed as the mean±SD of three
independent experiments. **Significantly different at p<0.01.



Western blot analysis. Cells were lysed in radioimmunoprecipitation
assay buffer containing 0.1 mM NaF, 0.02 mM phenylmethyl-
sulphonyl fluoride, 0.01 mM Na3VO4, 0.1 μg/ml pepstatin, and 0.1
μg/ml leupeptin. The cell lysate was mixed with 5× loading buffer
and heated at 95˚C for 5 min. Samples were separated by
electrophoresis on 12% sodium dodecyl sulfate polyacrylamide gels
and the separated proteins were transferred to a polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA). Membranes
were incubated overnight at 4˚C with rabbit anti-p21 (1:500; Santa
Cruz Biotechnology, Dallas, TX, USA), rabbit anti-p57 (1:500; Santa
Cruz Biotechnology), mouse anti-cyclin D1 (1:500; Santa Cruz
Biotechnology), rabbit anti-vimentin (1:500; Cell Signaling
Technology, Danvers, MA, USA), rabbit anti-E-cadherin (1:500 Cell
Signaling Technology) or rabbit anti-N-cadherin (1:500 Cell Signaling
Technology). Following incubation with horseradish peroxidase-
conjugated anti-rabbit (1:3000; Cell Signaling Technology) or anti-
mouse (1:3000; GeneTex, Irvine, CA, USA) secondary antibodies,
protein bands were visualized using an ECL detection system
(Amersham, Uppsala, Sweden) followed by membrane exposure to
X-ray film (Agfa, Mortsel, Belgium). Antibody specific to β-actin
(1:2000; Cell Signaling Technology) was used to confirm comparable
loading between gel lanes. The density of each protein band was
quantified using image J software (National Institutes of Health). 

Statistical analysis. Data were analyzed using Student’s t-test. Curve
fit and analysis were performed using GraphPad Prism software
(GraphPad Software, San Diego, CA, USA). p-Values <0.05 were
considered statistically significant. All results are expressed as the
mean±standard deviation (SD).

Results

Establishment of 5-FU-resistant cell sublines. Ten aliquots of
AGS cells were each treated with increasing concentrations
of 5-FU, from 5 μM to 100 μM, to develop 5-FU-resistant
GC cell lines. Five cell sublines survived 6.5 months after
treatment with 5-FU. The sensitivities to 5-FU of the five
resistant cell sublines (FR1-5) and that of the control AGS/D
cells were measured using a CCK-8 assay. The IC50 for 5-FU
of the five AGS/FR cells was significantly higher (>100 μM)
than that of the control cells (22.1±7.7 μM) (Figure 1). 

Resistance to other chemotherapeutic reagents. Experiments
were performed to determine whether the 5-FU-resistant cells
acquired resistance to other anticancer drugs. The sensitivity
to paclitaxel and cisplatin was measured with a CCK-8 assay.
The IC50 value for paclitaxel was 5.6±0.2 μM in AGS/D,
while that for paclitaxel increased in all 5-FU-resistant
sublines (Figure 2A). The IC50 values for cisplatin were
higher for all AGS/FR cells except AGS/FR4 compared to that
for AGS/D (3.7±0.6 μM) (Figure 2B). 

EMT phenotype of 5-FU-resistant cell lines. AGS/FR1 and
AGS/FR2 cells were spindle shaped, which is characteristic of
mesenchymal cells, while the other sublines were round,
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Figure 2. Drug-sensitivity assay of AGS gastric cancer cells (AGS/D; open symbols) and five 5-FU-resistant sublines (AGS/FR1-5; closed symbols) to
paclitaxel (A) and cisplatin (B). Cells were plated in a 96-well plate and treated with anticancer agents at increasing concentrations. After 72 h, CCK-
8 solution was added to each well and absorbance at 450 nm was measured to assess cell growth. The half-maximal inhibitory concentrations (IC50)
of paclitaxel and cisplatin were calculated. Data are expressed as mean±SD of three independent experiments. **Significantly different at p<0.01.
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Figure 3. Epithelial–mesenchymal transition phenotype of AGS gastric cancer cells (AGS/D) and five 5-FU-resistant sublines (AGS/FR1-5). A: AGS/D
and AGS/FR1-5 were each seeded in a 60 mm dish. Cell morphology was observed using a Leica DM at an original magnification of ×100. B: mRNA
expression of E-cadherin, N-cadherin, and vimentin was measured by quantitative reverse transcription polymerase chain reaction using a SYBR green
qPCR kit. Relative gene expression was calculated according to the comparative Ct method, using glyceraldehyde 3-phosphate dehydrogenase as an
internal control. C Level of vimentin, E-cadherin, and N-cadherin protein was determined by western blot analysis using antibody to vimentin (1:500),
anti-E-cadherin (1:500), and anti-N-cadherin (1:500). Anti-β-actin (1:2,000) was used to confirm equivalent loading. MKN1 cells were used as a
positive control. D: A wound-healing assay was performed to compare the cell migration ability of AGS/D and AGS/FR cells. Representative images
captured 0 and 24 h after wounding (magnification, ×50) are shown. E: Quantified wound-healing percentage of AGS/D and AGS/FR cells 24 h after
being wounded. Data are expressed as the mean±SD of three independent experiments. Significantly different at: *p<0.05, and **p<0.01.



similar to the control cells (Figure 3A). Because a spindle
shape is typical of EMT, we compared the level of expression
of EMT markers in the 5-FU-resistant cells. The level of
vimentin mRNA was elevated in AGS/FR1 and AGS/FR2 but
not in other cells compared to the control cells. qRT- PCR
showed that E-cadherin expression was lower in all 5-FU-
resistant cells except AGS/FR5 compared to the control cells.
In addition, N-cadherin mRNA level was elevated in all but
AGS/FR3 compared to the control cells. In AGS/FR3, N-
cadherin expression was lower than that in AGS/D (Figure
3B). Vimentin protein was not detectable by western blot in
any of the AGS/FR or AGS/D cells, even though vimentin
expression was clearly detected in another gastric cell line,
MKN1 (Figure 3C). Similarly, E-cadherin and N-cadherin
protein expression was not detectable by western blot in any
of the AGS/FR cells (Figure 3C).

A wound-healing assay was performed to examine cell
migration, which can increase in some cases of EMT. AGS/FR1
showed similar migration ability to AGS/D, while AGS/FR2-
AGS/FR5 showed reduced migration compared to AGS/D
(Figure 3D and E). These results suggest that EMT is not
essential in the acquisition of 5-FU resistance by AGS/FR cells. 

Changes in proliferation of 5-FU-resistant cells. We
performed cell proliferation assays and found that all resistant
cell lines had a longer doubling time than the control cells
(Table I). Cell cycle analysis was performed by propidium
iodide staining to identify the cause of the slow proliferation
of 5-FU-resistant cells. The ratios of AGS/FR1-5 in G0/G1
phase were 58.3%, 49.3%, 46.6%, 43.8%, and 46.4%,
respectively, significantly higher than that of the control cells
(38.7%). In contrast, the ratios in G2/M phase were lower in
all 5-FU-resistant cells compared to D (Figure 4A and B).
Therefore, 5-FU-resistant cells appear to be arrested in G0/G1
phase resulting in delayed cell proliferation.

Expression of cell-cycle regulatory proteins in 5-FU-resistant
cells. To determine why 5-FU-resistant cells show G0/G1
arrest, the expression of p21, p57, and cyclin D1, which

regulate the G1/S phase transition, was examined by western
blot. The expression of p21 protein tended to be higher and
the expression of p57 in all AGS/FR cell lines was 1.5 to 2
times higher compared to AGS/D cells. In contrast, expression
of cyclin D1 in all AGS/FR cell lines was 29-50% of that in
AGS/D cells (Figure 4C and D). 

Discussion

We established and characterized five 5-FU-resistant GC cell
sublines. The 5-FU-resistant cells commonly showed G0/G1
arrest, up-regulation of p57 and p21, and downregulation of
cyclin D1. Resistance to paclitaxel and cisplatin was also
observed in most of the AGS/FR cell lines. However, cell
migration was suppressed rather than increased in the 5-FU-
resistant cells compared to the control cells.

Paclitaxel is a drug that targets a cytoskeletal protein,
tubulin (23). Abnormal stabilization of the microtubule
polymer by paclitaxel causes mitotic arrest and apoptotic cell
death, resulting in an anticancer effect (24). Cisplatin induces
apoptosis in cells by producing unrepairable platinum–DNA
adducts on purine bases (25). Despite the different mechanism
of action for each anticancer agent, resistance to 5-FU,
paclitaxel, and cisplatin is observed in GC cell lines (12).
Many factors affect multidrug resistance. Arrest of tumor cells
in the G0/G1 phase, as observed in our study, provides
prolonged DNA damage-repair time and induces drug
resistance following anticancer drug treatment (26). 

All the AGS/FR cells we established showed G0/G1 phase
arrest and reduced proliferation rate. Similarly, an increased
ratio of cells in the G0/G1 phase was reported in 5-FU- as well
as 5-FU- and paclitaxel-resistant GC (27, 28). Together, these
results suggest that cell-cycle arrest causes multidrug
resistance to anticancer agents that act on rapidly dividing
cancer cells. 

In our study, p57 protein expression was up-regulated in all
five AGS/FR cell lines. p57 is a cyclin-dependent kinase
inhibitor that regulates the cell cycle (29). p57 overexpression
induced cell growth inhibition and G0/G1 arrest in GC (30).
In addition, up-regulation of p57 was also observed in
pancreatic cancer stem cells resistant to gemcitabine and
abraxane (31). Thus, up-regulation of p57 causing G0/G1
arrest may have contributed to the increased doubling time and
chemoresistance of AGS/FR cells in our study.

Cyclin D1 is one allosteric activator of cyclin-dependent
kinase that promotes transition to the G1/S phase through
retinoblastoma protein phosphorylation (32). Cyclin D1 is
overexpressed and plays an oncogenic role in many cancer
types, including colonic and breast cancer (33, 34). However,
overexpression of cyclin D1 was associated with good
prognosis in one colonic cancer study (35), suggesting that the
role of cyclin D1 is dependent on tumor type. Our data
showed an inverse relationship between cyclin D1 expression
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Table I. Doubling time of AGS gastric cancer cells (AGS/D) and five 5-
FU-resistant sublines (AGS/FR1-5). Data are expressed as mean±SD of
three independent experiments. 

Cell line                                                  Doubling time (h)

AGS/D                                                            18.8±0.3
AGS/FR1                                                       25.8±0.4*
AGS/FR2                                                       21.1±0.5*
AGS/FR3                                                       20.9±0.2*
AGS/FR4                                                       20.4±0.5*
AGS/FR5                                                       20.0±0.3*

*Significantly different at p<0.05.
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Figure 4. Increased accumulation of 5-FU-resistant cells in the G0/G1 phase. A: The cell-cycle distribution of AGS gastric cancer cells (AGS/D) and
five 5-FU-resistant sublines (AGS/FR1-5) was examined by flow cytometry following propidium iodide staining. Representative images of three
independent experiments are shown. B: Flow cytometric data are displayed in a histogram. Data are expressed as the mean±SD of three independent
experiments. C: Protein levels of p21, p57, and cyclin D1 were determined by western blot analysis using anti-p21 (1:500), anti-p57 (1:500), and anti-
cyclin D1, respectively. Anti-β-actin (1:2,000) was used to confirm equivalent loading. D: The band intensities of p21, p57, and cyclin D1 protein were
quantified by image J software and normalized to the band intensity of β-actin. Data are expressed as mean±SD of three independent experiments.
Significantly different at: *p<0.05 and **p<0.01.



and the proportion of AGS/FR cells in the G0/G1 phase,
supporting the notion that cyclin D1 functions to reduce
chemoresistance in AGS/FR cells. 

Drug-resistant cells often exhibit the EMT phenotype and
enhanced cell migration (36, 37). Some of the AGS/FR cells
we established showed spindle shaped morphology unlike their
round parental cells. However, the ability of the five AGS/FR
cell lines to migrate was either unchanged or reduced. The
reduced migration of AGS/FR cells may partly be due to the
slow proliferation rates of these cells compared to AGS/D. Our
results indicate that EMT is not essential for 5-FU resistance,
which is consistent with the results of other studies (38, 39). 

In this study, we compared the characteristics of five 5-FU-
resistant GC cell sublines. Increased p57 expression, reduced
cyclin D1 expression, and reduced cell growth were observed in
all 5-FU-resistant cell Iines. Most of these also exhibited
cisplatin and paclitaxel resistance. This is similar to clinical
experience as patients tend to develop multidrug resistance even
when they are treated with only one specific anticancer drug,
resulting in chemotherapy failure. Our results suggest that new
therapeutic strategies should aim to modulate p57 and cyclin D1
expression in patients who suffer from 5-FU resistant disease.
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