
Abstract. Background/Aim: The combination of paclitaxel and
carboplatin is the standard chemotherapy for ovarian cancer.
Previous studies have implied that vitamin D (1,25-D3) may
have growth inhibitory effects in ovarian cancer. This study
aimed to investigate the effect of paclitaxel, carboplatin and
1,25-D3 on the growth of ovarian cancer cells in vitro, based on
the hypothesis that 1,25-D3 might potentiate the effect of
paclitaxel and/or carboplatin. Materials and Methods: Three
non-commercial ovarian carcinoma cell lines UT-OV-
1(mucinous), UT-OV-3B (serous) and UT-OV-4 (endometrioid)
were exposed to different concentrations of 1,25-D3, paclitaxel
and carboplatin, respectively. The cell viability was measured
using a Crystal violet assay kit. The cellular vitamin D receptor
(VDR) mRNA levels were measured by qRT-PCR using the
LightCycler equipment. Results: The growth-inhibitory effect of
the combination of paclitaxel and carboplatin was 56% in UT-
OV-1, 33% in UT-OV-3B and 47% in UT-OV-4 cells. Single
1,25-D3 (10 μM) inhibited the growth of UT-OV-3B and UT-OV-
4 by 23% and 28%, respectively, whereas no effect was seen in
UT-OV-1 cells. These results are in line with the finding that the
expression of VDR was high in UT-OV-3B and UT-OV-4, but
very low in UT-OV-1. The combination of 1,25-D3, paclitaxel

and carboplatin resulted in 61%, 46% and 58% growth
reduction in UT-OV-1, UT-OV-3B and UT-OV-4 cells,
respectively. The additive effect of 1,25-D3 was 21% in UT-OV-
4, 20% in UT-OV-3B and 12% in UT-OV-1 cell line. Conclusion:
The results imply that combining 1,25-D3 with paclitaxel and
carboplatin may potentiate their growth inhibitory effect on
ovarian cancer cells with high VDR expression.

In 2018 there were approximately 300,000 new ovarian
cancer cases worldwide. The estimated incidence was 6.6
and mortality 3.9 per 100,000 women per year. (1). Ovarian
cancer is the most lethal malignancy of the female
reproductive system. Surgery combined with cytotoxic
therapy leads to favorable clinical response in up to 80% of
patients but the majority of patient relapse (2). The overall
survival (OS) has marginally increased in the past decades
despite advances in chemotherapeutic agents, targeted
therapy, and more radical surgery (3). However, complete
resection of all visible disease has been shown to
significantly improve outcome and OS (4-6).  

Calcitriol (1,25-dihydroxycholecalciferol, 1,25-D3) is the
hormonally active form of vitamin D. It is well known as an
important regulator of calcium synthesis and bone
metabolism (7-9). 1,25-D3 attaches to the vitamin D receptor
(VDR) in the cell nucleus and this complex interacts with
retinoid X receptor (RXR) resulting in the regulation of the
activity of vitamin D-responsive genes. By turning these
genes on or off, the complex helps to control calcium and
phosphate absorption and growth regulatory processes in the
cell (10-11). 1,25-D3 induces G0-G1 cell-cycle arrest and
thereby stops cell proliferation, triggers VDR-mediated cell
death, inhibits angiogenesis, and promotes differentiation in
many cancer cells in vitro and in vivo (12-17). The presence
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of functional VDR receptor in tumors and cancer cell lines
might thus represent a target for cancer therapy. Disabled
VDR activity leads to 1,25-D3 insensitivity, loss of anti-
proliferative effects, increase in oxidative DNA damage and
accelerated tumorigenesis (10-11). 

Many different cell types, including normal and malignant
ovarian cells, contain VDR and express vitamin D
metabolizing enzymes 1α-hydroxylase and 24-hydroxylase to
synthesize and degrade active 1,25-D3 locally (18-22). VDR-
polymorphisms have been indicated to correlate with a higher
risk of ovarian cancer (23). This links vitamin D status with
cellular anti-tumor actions, and vitamin D status may be a
modulator of cancer progression in persons living with cancer
(24-25). In 2016 a large Mendelian randomization study
suggested that genetically low major circulating form of
vitamin D (25(OH)D) plasma levels are associated with a
higher incidence of ovarian cancer (26). Moreover, higher
concentrations of 25(OH)D seemed to be associated with
longer survival rates at the case-control study of 1,600 women
diagnosed with epithelial ovarian cancer (27). Also, a meta-
analysis of individual cohort studies found a tendency between
low circulating 25(OH)D and ovarian cancer incidence
although this finding was not statistically significant (28). 

In a previous in vitro study, we demonstrated that 1,25-D3
combined with paclitaxel and carboplatin, inhibits endometrial
cancer cell growth and may even enhance the cytotoxic effect
of these agents (29). Ovarian cancer is clinically well known to
be sensitive to the combination of paclitaxel and carboplatin (3),
which has also been demonstrated in vitro (30-32). Previous in
vitro studies have also implied that 1,25-D3 has a growth
inhibitory effect on ovarian cancer cells (22, 33, 34). To our
knowledge, however, there are no preclinical studies examining
the effect of simultaneous use of paclitaxel, carboplatin and
1,25-D3 in ovarian cancer cells. The aim of the present study
was to test the growth inhibitory effect of these both as single
agents and in combination on ovarian cancer cell lines in vitro. 

Materials and Methods 
Cell lines. Five non-commercial ovarian cancer cell lines (UT-OV-
1, UT-OV-2, UT-OV-3A, UT-OV-3B and UT-OV-4) were used in
this study. The cell lines were established at the University of Turku,
Turku, Finland (35). The cell lines were originally derived from
primary or metastatic stage III-IV epithelial ovarian carcinomas.
UT-OV-1 was mucinous, UT-OV-2 and UT-OV-4 were endometrioid
and UT-OV-3A and -3B were serous cystadenocarcinomas (35).  

Cell cultures and treatments. The cells were cultured as described
previously (31). The cells were sub-cultured weekly and maintained
in a logarithmic phase in 75 cm2 culture flasks in Dulbecco’s
modified Eagle minimal essential medium (DMEM), containing
10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 1%
glutamine and 1% non-essential amino acids at 37˚C in a humidified
atmosphere supplemented with 5% CO2. All cell lines were tested
for mycoplasma contamination. 

Paclitaxel (Hospira® 6mg/ml, UK) and carboplatin (Accord® 10
mg/ml, UK) were purchased from the Pharmacy of the Tampere
University Hospital. 1,25-D3 was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Paclitaxel was initially diluted in 0.9%
sodium chloride to give a 0.1 mM concentration. For each
experiment final dilutions of 1-10 nM paclitaxel were prepared in
DMEM. Carboplatin was diluted in sterile water to get a stock
solution of 100 μg/ml and the final concentrations used were 0.1-
50 μg/ml. 1,25-D3 was dissolved in 95% ethanol and diluted in
DMEM to get final concentrations between 10 nM and 10 μM. All
final dilutions were prepared immediately before use. The
concentrations of drugs were based on previous reports as well as
pharmacological relevance (29,30,32,36). 

VDR expression. The VDR mRNA levels in UT-OV-1, UT-OV-2,
UT-OV-3A, UT-OV-3B and UT-OV-4 cells were measured by
quantitative reverse transcription polymerase chain reaction (qRT-
PCR) using the LightCycler equipment (Roche, Mannheim,
Germany). Total RNA was extracted using the RNeasy Mini Kit
(Qiagen, Valencia, CA, USA) and was reverse transcribed with
SuperScript™ First-Strand Synthesis System for RT–PCR
(Invitrogen, Carlsbad, CA, USA), as described elsewhere (29). qRT-
PCR was performed using 20 μM gene specific primers (Sigma-
Aldrich, sense 5’ ATCGGCATGATGAAGGAGTT 3’, antisense 5’
TGCTCCTCAGACAGCTTGG 3’) and 10 μM UPL probe (probe
number #12). The PCR program included the following steps: 10
min denaturation at 95˚C followed by 45 cycles of 10 s denaturation
at 95˚C, 30 s annealing at 60˚C and 1 s elongation at 72˚C. The
expression levels were normalized using glyceraldehyde-3-
phosphate dehydrogenase (GAPD) housekeeping gene.

Cell growth assays. The cells were plated on 96-well plates at
40,000 cells/well (UT-OV-1), at 70,000 cells/well (UT-OV-3B) and
at 60,000 cells/well (UT-OV-4) for each experiment, respectively.
The number of cells plated per well was adjusted according to the
plating efficiency of each cell line. Cells were allowed to adhere
overnight and then exposed to indicated concentrations of paclitaxel,
carboplatin, and 1,25-D3 alone or in combination for three days.
The cell viability was measured using the Crystal violet assay kit
(Abcam, Germany). The O.D. of the crystal violet staining was
measured at 590 nm and is directly proportional to the cell biomass.
All measurements were performed in six replicates and the
individual experiments were repeated three times. 

Statistical analyses were carried out using the IBM SPSS
Statistics for Windows, Version 22.0. Armonk, IBM Corp. Released
2013, NY: IBM Corp. Independent sample t-test were used to
compare differences between treatments to investigate the effect of
paclitaxel, carboplatin and 1.25-D3. 

Results 
Before evaluating the effect of the chemotherapeutic drugs and
1,25-D3, five ovarian carcinoma cell lines were tested for the
expression of VDR. VDR-expression was highest in the UT-
OV-3B and UT-OV-4 cell lines (Figure 1). UT-OV-1 also
expressed VDR to some extent. The expression of VDR in the
UT-OV-2 and UT-OV-3A cell lines was very low (Figure 1).
Hence, the subsequent experiments were performed using only
three cell lines: UT-OV-1, OT-OV-3B and UT-OV-4. 
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The ovarian carcinoma cell lines were first exposed to
different concentrations of 1,25-D3 (10 nM, 50 nM, 100 nM,
1 μM and 10 μM) to determine the estimated drug
concentration which causes 25% growth inhibition (IC25) in
cancer cell lines expressing VDR. All three cell lines
responded poorly to the concentrations of 10 to 100 nM of
1,25-D3. In UT-OV-1 cells, the growth inhibition was even
negligible with the higher doses of 1,25-D3: 3% with 1 μM
and 4% with 10 μM of 1,25-D3, respectively, when
compared to untreated controls. (Figure 2). In UT-OV-3B
cells, the corresponding growth inhibitory percentages were
13% and 26%, and in UT-OV-4 cells 12% and 32%,
respectively (Figure 2). Based on these results, the dose of
10 μM of 1,25-D3 was chosen for the next experiments
where the effects of the combinations of the cytotoxic agents
and 1,25-D3 were evaluated. 

Similarly, the cells were cultured with different
concentrations of paclitaxel (1 nM, 5 nM and 10 nM) and
carboplatin (5 μg/ml, 10 μg/ml and 50 μg/ml) to get the
estimated drug concentration causing approximately 25%
inhibition of cell growth (IC25). In UT-OV-1 cell line, the
IC25 concentration of carboplatin was 10 μg/ml and for
paclitaxel 5 nM (Figure 3). In UT-OV-3B and UT-OV-4, the
corresponding IC25 values for carboplatin were 50 μg/ml and
10 μg/ml and for paclitaxel 5 nM and 1 nM, respectively
(Figure 3). 

Subsequently, each cell line was treated with the chosen
concentrations of paclitaxel, carboplatin and 1,25-D3 as
single agents as well as with the different combinations of
the drugs to assess if there are any synergistic or additive
effects between the drugs (Table I, Figure 4). 

The growth inhibition in UT-OV-1 cell line was 48% with
paclitaxel alone (5nM), 29% with carboplatin alone (10
μg/ml) and 56% with the combination of the two. The

cytotoxic effect of the combination of the two drugs was
more effective than single paclitaxel or single carboplatin
(both p<0.001). Single 10 μM 1,25-D3 inhibited the cell
growth by 3%. The growth inhibitory effect of the
combinations of paclitaxel and 1,25-D3 and of carboplatin
and 1,25-D3 were 50% and 36% (p=0.172 and p=0.028),
respectively. Thus, the combination of the single agents and
1,25-D3 brought a minor significant effect with carboplatin
and 1,25-D3. The most effective was the combination of
these three drugs with 61% growth inhibition which achieved
statistical significance when compared to the control, to the
combination of paclitaxel and carboplatin and to the single
paclitaxel (p<0.001). An additive effect of 1,25-D3 with the
combination of paclitaxel and carboplatin was demonstrated. 

In the UT-OV-3B cell line, the cytotoxic effect of single 5
nM paclitaxel was 44% and that of single 50 μg/ml
carboplatin 29%. The cytotoxicity of the combination of the
two drugs was 33%. Surprisingly, single paclitaxel was thus
more effective than the combination with carboplatin 44% vs.
33% (p<0.001). Single 10 μM 1,25-D3 inhibited the cell
growth by 23%. Single paclitaxel was more efficient than the
combination of paclitaxel and 1,25-D3, 44% vs. 39%. Thus,
no additive or synergistic effect was achieved over single
paclitaxel. The growth inhibition seen with the combination
of carboplatin and 1,25-D3 was 35% (compared to single
1,25D-3 p<0.001). The additive effect with this drug
combination was shown and was statistically significant. The
cytotoxic effect of the combination of the three drugs
(paclitaxel, carboplatin and 1,25-D3) was 46%. Only a minor
additive effect was achieved with this combination over single
paclitaxel (44%) and it was statistically significant (p=0.021). 

In the UT-OV-4 cell line, single 1 nM paclitaxel was more
efficient than single 10 μg/ml carboplatin but the
combination of two drugs was the most efficient. The growth
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Figure 1. Vitamin D receptor (VDR) expression in UT-OV-1, UT-OV-2, UT-OV-3A, UT-OV-3B and UT-OV-4 ovarian cancer cell lines.



inhibition was 36% with paclitaxel and 47% with the
combination of paclitaxel and carboplatin (p<0.001). The
corresponding percentage for single carboplatin was 30%
and the difference compared to the combination of these two
was significant (p<0.001). Single 1,25-D3 (10 μM) inhibited
the cell growth by 28%. A dose of 10 μM of 1,25-D3
combined with carboplatin 10 μg/ml or with 1 nM paclitaxel
was equal with the combination of carboplatin and paclitaxel
(cytotoxicity of 47%, 46% and 47%) (all p<0.001 when
compared to the control). The suppression of the cell growth
in comparison to the control was 58% with the combination
of the three drugs: paclitaxel, carboplatin and 1,25-D3. The
additive effect of 1,25-D3 was 21% when comparing the
combination of three drugs to the combination of two drugs:
paclitaxel and carboplatin. This difference was statistically
significant (p=0.001). 

Discussion 

Our preliminary results showed that 1,25-D3 inhibits ovarian
cancer cell growth in vitro as a single agent, but also in
combination with paclitaxel and carboplatin. The most
efficient combination was 1,25-D3, paclitaxel and
carboplatin together in all three cell lines. The anti-tumor
effect was 61% in UT-OV-1, 46% in UT-OV-3B and 58% in
UT-OV-4 cell line. The corresponding numbers for the
combination of paclitaxel and carboplatin were 56%, 33%
and 47%, respectively. 

The additive effect of 1,25-D3 was 21% in UT-OV-4, 20%
in UT-OV-3B and 12% in UT-OV-1 cell line. Furthermore,
the combination of carboplatin or paclitaxel with 1,25-D3
was equal with the combination of paclitaxel and carboplatin
in UT-OV-3B and UT-OV-4 cell lines. In the UT-OV-1 cell
line the combination of paclitaxel and carboplatin was the
most efficient when compared to the other two-drug
combinations. Surprisingly, in the UT-OV-3B cell line
(serous cystadenocarcinoma) single-agent paclitaxel was
more effective than the combination of paclitaxel and
carboplatin and almost as effective as the combination of the
three drugs (44% vs. 46%). These data are, however, in line
with our previous study examining endometrial cancer cell
lines (29). Adding carboplatin did not provide any additive
or synergistic effect. This is strange because serous
cystadenocarcinoma is generally sensitive for carboplatin.
UT-OV-3B cell line was stage III or IV but it might have
been low-grade serous carcinoma which is more often
platinum resistant. It is also possible that the concentrations
we used were suboptimal. Fanning et al. (37) compared
cytotoxicity concentrations of cisplatin and carboplatin and
in their study the IC50 value for carboplatin was as high as
490 μg/ml with exposure periods 1, 4, 24 and 48 h. They
used the commercial OVCAR-3 cell line. For a specific
patient after the dose of 350 mg/m2 carboplatin, the peak

plasma level was 123 μM (45 μg/ml) (38) which is almost
the same concentration we used in the UT-OV-3B cell line.
As this is a small in vitro study our results need to be
confirmed by aid of in vivo epithelial ovarian cancer (EOC)
models. However, we used non-commercial well-established
cell lines, which should closer resemble the original tumors
than the commercial ones, and at least additive anti-tumor
effect was seen in all but one of the cell lines. 

The UT-OV-1 cell line was mucinous cystadenocarcinoma
and UT-OV-4 endometrioid cystadenocarcinoma. Both cell
lines have been earlier shown to be sensitive to paclitaxel,
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Figure 2. Effect of cytotoxic agents on UT-OV-1, UT-OV-3B and UT-
OV-4 ovarian cancer cell growth. The cells were treated for three days
with indicated drugs and optical density (OD) was measured at 590 nM.
OD is directly proportional to cell biomass. Mean and SD of six
replicates are shown. P: Paclitaxel, Ca: carboplatin.
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Figure 3. Effect of various concentrations of 1,25-D3 on UT-OV-1, UT-OV-3B and UT-OV-4 ovarian cancer cell growth. The cells were treated for
three days with indicated concentrations of 1,25-D3 and optical density (OD) was measured at 590 nM. OD is directly proportional to the cell
biomass. Mean and SD of six replicates is shown. D3: 1,25-D3.



carboplatin and cisplatin (31). Although this finding is in line
with our results, the sensitivity of the UT-OV-1 is quite
surprising, as mucinous ovarian cancer is generally
considered resistant to platinum-based chemotherapy (39-
40). Moreover, mucinous ovarian cancer cell lines have been
found to have intrinsic platinum resistance (41). Because of
our contrasting result, we confirmed the mucinous character
of the UT-OV-1 by immunohistochemistry. The tumor cells
were positive for CDX2, CEA, CK7 and p53, which are
features of ovarian mucinous adenocarcinoma, intestinal type
(42, 43). This discrepancy might be due to the availability of
better diagnostic tools which has led to improved
histopathological diagnosis of different types of mucinous
ovarian cancer. Mucinous ovarian cancer has also several
common pathological and molecular features with
gastrointestinal tumors and it has been recently reviewed that
altered mucin expression indicates chemoresistance in breast
and colon cancer (44), but no data regarding the effect of
altered mucin expression has to our knowledge been reported
in ovarian cancer. 

However, there is both experimental and clinical evidence
that the platinum resistance of mucinous ovarian cancer is
not universal. Ricci et al. (45) reported the molecular,
metabolic and pharmacological characterization of two
patient derived xenografts (PDXs) #164 and #182 from
mucinous ovarian carcinomas. PDX#164 was derived from
a Stage IV tumor and PDX#182 from a Stage I tumor.
PDX#164 was found to be moderately sensitive to both
platinum and paclitaxel while PDX#182 was not. 

In retrospective clinical series response rates have varied
between 13-60% to first-line carboplatin and paclitaxel
chemotherapy among women with mucinous ovarian cancer
(46). The biological actions of 1,25-D3 are mediated by
VDR, mostly via genomic pathways. The expression of VDR
by cancer cells is required for the anti-proliferative effects
of 1,25-D3 in vitro (10). However, there is evidence that

VDR expression or function may become aberrant during
cancer development because of altered target gene
regulation, overexpression of 1,25-D3 24-hydroxylase
(catabolizing enzyme of 1,25-D3) or deregulation of
pathways downstream of VDR (such as apoptosis) (25).
Peng et al. (47) also reported that the antiproliferative effects
of 1,25-D3 and its analogs and intact VDR-signaling
machinery are dependent on a positive estrogen receptor
status in breast cancer cell lines. On the other hand, it seems
that in ovarian cancer there is no correlation with positive
estrogen receptor status and 1,25-D3 actions (19). In our
study three of five ovarian carcinoma cell lines were VDR-
positive. Of note is that UT-OV-3B and UT-OV-4 strongly
expressed VDR, while UT-OV-1, UT-OV-2 and UT-OV-3A
did not. The explanation for the different actions of 1,25-D3
might be that VDR activity was disabled as described earlier. 

Earlier studies support the present findings and the role of
1,25-D3 in cancer therapy. 1,25-D3 induces GADD45-gene
and causes cell-cycle arrest at the G2/M transition in ovarian
cancer cells (48). Furthermore, in a variety of studies a
synthetic vitamin D analog (EB1809) has shown
antiproliferative efficacy in ovarian tumors and tumor cells
through induction of cell death, cell-cycle arrest,
differentiation and inhibition of angiogenesis (15, 17, 22,
49). Lungchukiet et al. (50) demonstrated that 1,25-D3
suppresses epithelial ovarian cancer invasion into omentum
in vitro and in an animal model through VDR-expression. In
addition, 1,25-D3 has been found to be a potent inhibitor of
ovarian cancer cell growth in vitro and increase the
antiproliferative ability of carboplatin by altering the cell
cycle and enhancing apoptosis (33). Liu et al. (51) found that
1,25-D3 delays the progression of ovarian cancer by
increasing the expression of VDR and E-cadherin and
decreasing β-catenin in vitro and in vivo in mouse models.
This is in concordance with our results and provides
evidence on the use of 1,25-D3 as a potential therapeutic
agent for ovarian cancer. 

The authors are not aware of any studies comparing
preclinically the effect of single-agents and the combination
of 1,25-D3 and paclitaxel and carboplatin in ovarian cancer.
The cytotoxic ability of single agents of 1,25-D3, paclitaxel
and carboplatin has been evaluated in a wide panel of tumor
types in vitro and in vivo, also in ovarian carcinoma (30-32,
34, 49, 52). Rodriquez et al. (53) examined the
progestin/vitamin D combination in ovarian cancer cells and
whether progestins inhibit the CYP24A1 enzyme. They
demonstrated that theire combination synergistically reduced
cell viability and induced apoptosis. Moreover, progestins
inhibited CYP24A1, thus extending 1,25-D3 activity. Ly et
al. (54) showed similar synergistic result with liarozole (an
inhibitor of retinoic acid and aromatase) and 1,25-D3 in the
aggressive prostate cancer cell line DU145. They suggested
that this might be due to inhibition of 24-hydroxylase
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Table I. The percentage of cytotoxicity of single agents and of different
combination of drugs in three different ovarian carcinoma cell lines
(UT-OV-1, UT-OV-3B, UT-OV-4). P: Paclitaxel; Ca: carboplatin; D3:
1,25-D3.

Cytotoxicity                           UT-OV-4         UT-OV-3B       UT-OV-1 

D3     10 μM                             28%                  23%                  3% 
P        1/5/5 nM                         36%                  44%                 48% 
Ca     10/50/10 μg/ml               30%                  29%                 29% 
P + Ca                                                                  47%                 33% 
56% 
P + D3                                       46%                  39%                 50% 
Ca + D3                                     47%                  35%                 36% 
P + Ca + D3                              58%                  46%                 61% 
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Figure 4. Cell growth inhibition in UT-OV-1, UT-OV-3B and UT-OV-4 ovarian cancer cells with different combinations of cytotoxic agents and
1,25-D3. The cells were treated for three days with indicated drugs and optical density (OD) was measured at 590 nM. OD is directly proportional
to the cell biomass. Mean and SD of six replicates are shown. P: Paclitaxel, Ca: carboplatin, D3: 1,25-D3.



activity, leading to increased 1,25-D3 half-life and VDR up-
regulation. Previous data suggest that the addition of 1,25-
D3 to multiple chemotherapy regimens increases the activity
of treatments and potentially leads to a better response rate
to the regimens. 

In conclusion, we demonstrated using three ovarian
carcinoma cell lines that 1,25-D3 has growth inhibitory
effect on VDR-expressing cell lines both alone and
combined with paclitaxel and carboplatin. Further in vitro
and in vivo studies are warranted for evaluation of the
anticancer efficacy and the role of 1,25-D3 in relation to
other ovarian cancer treatment modalities in the tumor
microenvironment and in developed EOC models. 
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