
Abstract. Background/Aim: Glioblastoma (GB) is the most
aggressive type of tumor in the central nervous system and is
characterized by resistance to therapy and abundant vasculature.
Tumor vessels contribute to the growth of GB, and the tumor
microenvironment is thought to influence tumor vessels. We
evaluated the molecular communication between human GB
cells and human brain microvascular endothelial cells
(HBMEC) in vitro. Materials and Methods: We investigated
whether GB-conditioned media (GB-CM) influenced HBMEC
proliferation and migration, as well as the levels of MMP-9,
CXCL12, CXCR4, CXCR7, VEGFs, VEGFR-2, and WNT5a in
HBMEC. Results: Although HBMEC proliferation was not
modified, increased HBMEC migration was detected after GB-
CM treatment. Furthermore, treatment of HBMEC with GB-CM
resulted in increased levels of MMP-9 and CXCR4. The levels
of WNT5a, VEGFs and VEGFR-2 were not affected. Conclusion:
GB-secreted factors lead to increased endothelial cell migration
and to increased levels of MMP-9 and CXCR4.

Glioblastoma (GB) is the most common and deadly type of
primary brain tumor in adults (1). The hallmarks of GB are
its heterogeneity, the high proliferative rate, infiltration into
the cerebral parenchyma (2), resistance to treatment (3-5),
and high vascularization (6). The modest outcomes of anti-
angiogenic strategies in GB patients (7) and the lack of

understanding of how tumors modify endothelial cells (EC)
behavior have increased the interest in studying GB-EC
molecular interactions to identify alternative angiogenic
targets for the development of new therapeutic perspectives. 

The blood-brain barrier (BBB) is a complex structure
formed by highly specialized brain microvascular endothelial
cells (EC) with specific occlusive junctions (8, 9). Like other
solid tumors, GB response to hypoxia involves the regulation
of growth factors, chemokines and proteases, which induce
alterations in the vessel structure by inducing the proliferation
and migration of EC to form new blood vessels from pre-
existing vessels (10). Angiogenesis in GB occurs at a high rate
and also results in the aberrant and subfunctional architecture
of the tumor vasculature (11, 12). In addition to EC-dependent
angiogenesis, vascular mimicry also contributes to GB
vascularization, although to a lesser extent (13). These
vascular-like channels can be formed independently of EC via
the transdifferentiation of GB stem cells (GSCs) into pericytes
(PC) or smooth muscle cells (SMC). In contrast, in the
presence of EC, GSC-differentiated PC/SMC cells can interact
intimately with EC to facilitate angiogenesis and produce more
stable vessels, which perfuse tumors more efficiently (14, 15).
These angiogenic processes highlight the idiosyncrasies and
complexity of GB angiogenesis, which may influence tumor
EC in specific ways. Therefore, studies of the behavior of EC
in the context of GB angiogenesis are important.

The principal and best-described angiogenic factor is
vascular endothelial growth factor (VEGF), which has at least
6 isoforms in humans that are important for both embryonic
development and tumor growth (16). These growth factors can
induce survival, proliferation and migration of EC (17, 18).
VEGFs are highly upregulated in GB, and their receptors are
overexpressed in tumor vessels (13, 19, 20). VEGF-A is
synthesized in massive quantities in gliomas, whereas other
members of this family, such as VEGF-C and VEGF-D, are
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produced at much lower levels (20, 21). VEGF-A gradients
induce the upregulation of the tyrosine kinase receptors
VEGFR-2 and -3 in tip cells located at the most distal ends of
sprouting capillaries (22-24). VEGF-A also induces the
expression of the Notch ligand Dll4 on tip cells, which, by
lateral inhibition, induces adjacent cells expressing Notch to
become stalk cells. This ultimately provides negative feedback
for VEGFR signaling by upregulating VEGFR-1 and
inhibiting VEGFR-2 and -3 expression in stalk cells (24-27). 

WNT family members are secreted proteins. In humans, the
family consists of 19 members that regulate cell proliferation,
differentiation, motility and fate in many stages of
tumorigenesis. WNT binds to both G-protein-coupled
transmembrane receptors (GPCRs) called Frizzled (Fz) and to
receptors-related-to-low-density-lipoprotein (LRPs), which
transduce their signals through β-catenin-dependent (canonical)
or β-catenin-independent intracellular pathways (not canonical)
(28). WNT5a signaling is involved in the development of
various cancers, by contributing to angiogenesis and activating
β-catenin-dependent or -independent pathways in various EC
and tumor cell lines (28-30). 

Chemotactic cytokines, a large superfamily of small
peptides that signal through G-protein-coupled receptors
(GPCRs), are another important group of molecules that are
involved in angiogenesis. These receptors act via
heterotrimeric G-proteins or through survival proteins such as
arrestin to regulate a diverse set of signal-transduction
pathways related to cell survival, proliferation and migration
(2, 31). The stromal cell-derived factor 1 (SDF-1 or
CXCL12)–CXCR4/7 axis drives the hypoxia-dependent
angiogenesis and invasiveness of GB precursor cells. CXCL12
stimulates VEGF secretion in CXCR4-expressing CSCs cells
of GB, which promotes tumor angiogenesis via PI3K/AKT
signaling (32, 33). The function of CXCR4 has been linked to
sprouting angiogenesis, as it is expressed in tip cells, and it
can mediate VEGF expression through the transcription factor
Yin Yang 1 or independently of the VEGF pathway (34-36).
CXCR7, in turn, is highly expressed in tumor EC, microglial,
and GB cells (37). Although CXCR7 has been shown to be
highly expressed in the blood vessels of several tumors, its
function in EC is only beginning to be understood (38).
Increased expression of CXCR7 in microvascular EC during
hypoxia favors CXCL12-induced glioma cell migration, which
facilitates the binding of CXCL12 to EC and the activation of
CXCL12-mediated cell crossing through the endothelium (36).
In addition, CXCR7-targeted siRNA inhibits migration, tube
formation and resistance to serum starvation in tumor EC (38).

Finally, matrix metallopeptidase 9 (MMP-9), also known
as type IV collagenase, gelatinase or gelatinase B, is a
matrixin, which is a class of enzymes that belong to the zinc-
metalloproteinase family that are involved in the degradation
of the extracellular matrix (ECM) (39). Endothelial barrier
damage is associated with enhanced matrix MMP-9 activity,

which is known to mediate claudin-5 disruption (40).
Furthermore, proteases such as MMP-9 can release growth
factors bound to ECM and promote angiogenesis (41).
MMP-9 has been shown to be associated with the migration
of human brain EC and tubulogenesis (42, 43). Several
signaling pathways culminate in increased expression of
MMPs in gliomas. These include VEGF (44), WNT-5a (45)
and CXCR4 pathways, which contribute to cell migration
and secretion of MMPs, including gelatinases (46). 

We have analyzed whether GB could influence
proliferation and migration, which are key processes in
angiogenesis, of human brain vascular EC (HBMEC). Very
little is known about the angiogenic molecules produced and
secreted by the EC in GB because most studies have focused
on the pro-angiogenic profile of molecules secreted by the
tumor cells. Therefore, we analyzed how GB factors
influence the profile of the expression, protein levels and/or
localization of important angiogenic factors and some of
their receptors in HBMEC, which may be associated with the
proliferation and migration of these ECs.

Materials and Methods

Cell culture. Human brain microvascular endothelial cells (HBMEC)
were cultured in the presence or absence of GB-conditioned media
(GB-CM) (47), which comprised a mixture of CM from GBM02 and
GBM11 cells that are patient-derived GB cells and were established
in our laboratory as previously described (48). Both endothelial and
GB cells were cultured in DMEM/F-12 medium (Dulbecco’s
Modified Eagle Medium) supplemented with 3.5 mg/ml glucose, 0.1
mg/ml penicillin, 0.14 mg/ml streptomycin, and 10% fetal bovine
serum (FBS). To produce the CM, 75% confluent GB cells were
incubated with serum-free DMEM/F-12 for 72 h. This medium was
collected and filtered through a 0.2 μm membrane. After the EC had
achieved ~75% confluence, they were plated (the number of cells is
specified in each assay) and treated with serum-free medium or with
the pooled GB-CM (GB-CM: 25% CM from GBM11, 25% CM from
GBM02 and 50% of fresh media) for 24, 48 or 72 h. The cells were
maintained in a humidified atmosphere of 5% CO2 at 37˚C and were
routinely tested for mycoplasma contamination (LT07-710 4C
Reagent Mycoalert Plus, Lonza®, Basel, CH).

Proliferation assay. Proliferation was analyzed using a BrdU
incorporation assay. HBMEC were plated at 3×105 cells/well in
triplicate in a 96-well plate. The cells were treated with DMEM/F12
or GB-CM and were incubated for 24, 48 or 72 h at 37˚C in a
humidified atmosphere (5% CO2). The BrdU assay was performed
according to the manufacturer’s protocol (Cell Proliferation ELISA
for BrdU, Roche®, Basel, CH). The BrdU labeling solution was
added to the cultures for 50 min or 6 h (49) before completing each
treatment (24, 48 or 72 h) to allow incorporation. The plate was
protected from light and incubated in a humidified atmosphere
(37˚C, 5% CO2). After the incubation period, the culture medium
was removed, and 100 μl of FixDenat solution was added to each
well. The samples were incubated for 30 min at room temperature.
After this time, the reagent was removed, and BrdU POD-working
solution (antiBrdU-FLUOS) was added and incubated for 1 h and 40
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min. After washing three times with 1x PBS, 50 μl of the substrate
solution were added and incubated for 3 min with stirring. The stop
solution (H2SO4) was then added, and the plate was incubated for 5
min with shaking. The colorimetric analyses were performed by
determining the absorbance at 690 nm using a Victor 3 1420
multilabel plate reader (PerkinElmer, Waltham, Massachusetts, US).
The analyses were performed in four independent experiments.

Scratch assay. The migration capability of HBMEC was evaluated using
a scratch assay. Two wells of a 24-well plate were used for each time
point. To achieve a confluent EC monolayer, 4×105 cells were plated in
each well in serum-free conditions. Six hours later, 10 μM cytosine
arabinoside (Ara-C) was added to inhibit proliferation of these cells, and
the cultures were maintained for 24 h. Afterwards, a “wound” was made
by scratching the monolayer with a 10 μl pipette tip in a straight line.
Any debris and displaced cells were removed by gently washing the
well three times with DMEM/F12. Subsequently, the cells were treated
or not treated with GB-CM for 0, 24 and 48 h. To document the cell
migration and compare the EC migration patterns in the samples, digital
images from the center of each well were taken at a magnification of
10x. A CCD camera (Nikon Eclipse, Nikon, Shinagawa, Tokyo, JP) was
used for the image acquisition. The width of each scratch was measured
with Fiji for ImageJ software (version 1.52). The wound area
comparisons were made using the 0 h values as the basis and plotting
the respective areas for each condition at 24 or 48 h. Three independent
experiments were performed.

Western blotting. HBMEC were cultured in plates and treated with
GB-CM or control media for 24 h (4.2×106 cells/plate), 48 h
(2.1×106 cells/plate) and 72 h (1.4×106 cells/plate). The cells were
then washed with 1x PBS and detached using a cell scraper, after
which 1x RIPA was added (20 mM Tris-HCl pH 7.5, 150 mM NaCl,
1 mM Na2EDTA, 1% NP-40, 1% sodium deoxycholate) that
contained 1x protease inhibitors (S8830 Sigma Aldrich®, St. Louis,
MO, USA). The lysates were sonicated 2 times for 10 s using a
Ultronique® cell disruptor (Ultronique, Indaiatuba, São Paulo, BR)
and then centrifuged at 4˚C and 10,000 × g for 30 min. The
supernatants were analyzed for protein content using a Bradford
Bio-Rad Protein Assay kit (Cat n˚ #500-0006, BioRad®, Benicia,
CA, US). Western blotting was performed as described by Towbin
et al. (1979) with minor modifications (50). For immunodetection
of proteins, 80 or 100 μg of total protein lysate was separated by
electrophoresis in 8, 10 or 12% SDS polyacrylamide gels and
transferred to polyvinylidene difluoride (PVDF) membranes. The
PVDF membranes were then blocked with 5% nonfat milk in Tris-
buffered saline with 0.1% Tween-20 (TBS-T) for 1 h and then
incubated with specific primary antibodies overnight at 4˚C. The
primary antibodies used were anti-VEGF-A (1:1000, 437241
Abcam®, Cambridge, UK), anti-MMP-9 (1:1000, 436265 Abcam®),
anti-CXCR4 (1:500, 9046 Santa Cruz Biotechnology®, Dallas, TX,
US), anti-CXCR7 (1:1000, 117836 Abcam®), anti-WNT-5a (1:1000,
2392 Cell Signaling Technology®, Danvers, MA, USA), and anti-
α-tubulin (1:2000, A11126 Sigma-Aldrich®). The membranes were
washed with 0.1% TBS-T and incubated in 1:2000 Goat Anti-Mouse
IgG (H + L) (G-21040 Thermo Fisher Scientific®, Waltham, MA,
USA) or Goat Anti-Rabbit IgG (H + L) (G-21234 Thermo Fisher
Scientific®) secondary antibody for 2 h. The bands were detected
using chemiluminescence (ECL): West Pico Chemiluminescent
Supersignal Developer Solutions Substrate® (34077 Thermo Fisher
Scientific®) and Supersignal West Femto Maximum Sensitivity

Substrate® (34095 Thermo Fisher Scientific®) using a ChemiDoc
MP imaging system (BioRad®, Benicia, CA, USA). The
densitometry analyses were performed using ImageJ software
(version 1.52), and the ratio between the immunodetected protein
and the loading control (α-tubulin) was calculated. As a positive
control for the primary antibody specificity, GBM02 or GBM11
cells were used (data not shown) because GB cells secrete large
quantities of the angiogenic factors analyzed (51-53). The analyses
were performed using at least three biological replicates.

Immunocytochemistry. HBMEC were cultured on coverslips in a 24-
well plate: 5×104 for the time point of 24 h, 2.5×104 for the time
point of 48 h, and 1.25×104 for the time point of 72 h. After
incubation in the absence or presence of GB-CM at different time
points, the cells were fixed with 4% paraformaldehyde (PFA)/PBS
for 20 min, permeabilized with 0.1% Triton X-100/PBS, and blocked
with 5% BSA/PBS for 1 h. For the immunofluorescent analysis of
the localization of the angiogenic factors in the EC, the coverslips
were incubated overnight at 4˚C with anti-VEGF-A (1:500, 437241
Abcam®), anti-CXCR4 (1:250, 9046 Santa Cruz Technology®), anti-
CXCL12 (16 μg/ml, MAB 350 R&D System®, Minneapolis,
Minnesota, US), or anti-MMP-9 (1:500, 436265 Abcam®). Thereafter,
the cells were washed with 1x PBS and incubated with secondary
antibodies conjugated with Alexa Fluor: goat anti-rabbit IgG 488
1:250 (A-11008 Life Technologies®,  Carlsbad, CA, USA) or Alexa
Fluor® goat anti-mouse IgG 488 1:250 (A-11059 Life Technologies®)
for 1 h and 30 min at room temperature. The coverslips were then
washed with 1x PBS, stained with DAPI (4’,6-diamino-2-
phenylindole) at 1 μl/ml (D9542 Sigma-Aldrich®), and mounted on
glass slides using Fluoromount-G®. Negative controls were prepared
using the secondary antibodies. The cells were imaged at 63x using
a DMi8 advanced fluorescence microscope (Leica Microsystems,
Wetzlar, Germany) and analyzed with Leica LA SAF Lite. The
images were processed using the software Fiji for ImageJ software
version 1.52 (Wayne Rasband, National Institutes of Health, MD,
USA). The analyses were performed using three biological replicates.

qRT-PCR. Total RNA was extracted from HBMEC using the TRIzol
method (15596018 Life Technologies®) according to the
manufacturer’s instructions. One microgram of total RNA,
Oligo(dT) primer 50 μM (58862 Life Technologies®), and High-
Capacity cDNA Reverse Transcription Kit (4368814, Applied
Biosystems®, Foster City, CA, USA) were used to perform the
cDNA synthesis. We added 30 ng of cDNA per well and the Power
Sybr Green Master Mix (4368706, Thermo Fisher Scientific) in
triplicate in a 96-well plate (MLL9651, BioRad®). The reactions
were run in a C1000 Touch Thermo Cycler (BioRad®), and β-actin
was used as the endogenous gene control.  The GBM02 cDNA was
used as a positive control for amplification (data not shown). The
analysis of relative gene expression (fold change) was conducted
using the Pfaffl method (54). β-Actin was used as the endogenous
gene control, and untreated samples were used as the control for
each time point. The analyses were performed using two biological
replicates. The primers used were as follows: total VEGF Forward
(5’-TTCGGGAACCAGATCTCTCACC-3’); total VEGF Reverse
(5’-TTCGGGAACCAGATCTCTCACC-3’); CXCR4 Forward (5’-
GCC TTA TCC TGC CTG GTA TTG TC-3’); CXCR4 Reverse (5’-
GCG AAG AAA GCC AGG ATG AGG AT-3’); β-actin Forward
(5’-ATGAAGATCAAGATCATTGCTCCT-3’); β-actin Reverse (5’-
ATGAAGATCAAGATCATTGCTCCT-3’). 
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Semiquantitative PCR. WNT5a and MMP-9 gene expression in the
HBMEC were analyzed using a semiquantitative method. After
running the reactions in the C1000 Touch Thermo Cycler as
described above, the samples were applied to an 8% acrylamide gel.
A 100 bp DNA ladder was used as base pair marker (15628019,
Invitrogen™). The gel was run at 75 v for 2 h and then was stained
for 1 h with the UniSafe Dye (20,000 x) (UNI_SRO1031,
Uniscience do Brasil, Osasco, São Paulo, BR) with stirring. The
images were acquired using a ChemiDoc™ Imaging System (Bio-
Rad®), and the bands were quantified using the Fiji-ImageJ®
program (version 1.52). The analyses were performed using two
biological replicates. The primers used were as follows: MMP-9
Forward (5’-TTGACAGCGACAAGAAGTGG-3’); MMP-9
Reverse (5’-TCACGTCGTCCTTATGCAAG-3’); WNT5a Forward
(5’-GGGAGGTTGGCTTGAACATA-3’); WNT5a Reverse (5’-
AGGGCTCAGTGTGAAGAGGA-3’); β-actin Forward (5’-
ATGAAGATCAAGATCATTGCTCCT-3’); β-actin Reverse (5’-
ATGAAGATCAAGATCATTGCTCCT-3’).

Statistics. The data are represented as the mean values and were
analyzed for statistical significance using the paired sample t-test.
The derived p-value levels are shown with stars indicating the
significance: *p<0.05. The analyses for the qRT-PCR and
semiquantitative PCR were performed using GraphPad online.

Results

HBMEC migration, but not proliferation, was increased in
the presence of GB-CM. Since GB are highly vascularized
tumors, we examined whether the tumor-secreted factors
would influence the proliferation and migration of EC. We
tested whether GB-CM was able to modulate HBMEC
proliferation using the BrdU incorporation method. The
HBMEC proliferation rate was not altered following
treatment with GB-CM at the time points analyzed (24, 48
and 72 h) (Figure 1A). We performed the scratch assay to
evaluate whether GB-CM modify the migration rate of
HBMEC. We observed that migratory rate of HBMEC was
increased in the presence of GB-CM (*p<0.05) at 48 h
(Figure 1B).

The levels of MMP-9 in the HBMEC were increased
following treatment with GB-CM. We analyzed whether
treatment with GB-CM would modulate MMP-9 levels in
EC. The enzyme MMP-9 was detected in HBMEC extracts
at all time points analyzed (Figure 2A). Specific bands were
detected at ~92 kD. The levels of MMP-9 in HBMEC
treated with GB-CM for 48 h or 72 h were significantly
increased (*p<0.05) compared to those in HBMEC control
(Figure 2A). 

We further determined the subcellular localization of MMP-
9 in HBMEC using immunocytochemistry. We observed
punctiform labeling throughout the HBMEC cytosol at all
time points analyzed. There was a significant increase in
MMP-9 levels (p<0.05) when HBMEC were treated with GB-
CM for 72 h compared to control (Figure 2B).

We also analyzed the MMP-9 mRNA expression levels.
We detected bands of ~200 bp, which demonstrated the
specificity for MMP-9 cDNA amplification. There was no
statistically significant difference in MMP-9 mRNA levels
between HBMEC treated with GB-CM (Figure 2C)
compared to controls. 

An early mRNA level rise was followed by later increase in
CXCR4 protein in GB-CM-treated HBMEC. Given the
importance of CXCL12 in the angiogenesis process and of
CXCR4 expression in migrating endothelial tip cells, we
analyzed the gene expression, protein levels and/or cellular
location of this chemokine and its receptors CXCR4 and
CXCR7 in HBMEC treated with GB-CM or control medium.

The qRT-PCR analysis indicated sustained early changes in
the fold expression CXCR4 mRNA levels in the GB-CM-treated
HBMEC compared to the control. The mRNA levels of CXCR4
increased 3-fold at 24 h and 2.4-fold at 48 h but then decreased
to almost null levels at 72 h compared to the control (Figure 3A).
We next analyzed CXCR4 and CXCR7 receptor levels using
western blotting. Specific bands were detected in both HBMEC
treated with GB-CM and untreated cells at all time points. We
observed two bands for CXCR4 and CXCR7 at ~50 kD. We
observed an increase in CXCR4 in HBMEC that were treated
with GB-CM for 72 h (*p<0.05) (Figure 3B) compared to the
control whereas the levels of CXCR7 protein were not altered
when HBMEC were treated with GB-CM (Figure 3B).

Next, the subcellular localization of CXCR4 and its ligand
CXCL12 in HBMEC that were treated with GB-CM or the
control medium was analyzed by immunocytochemistry. We
observed a punctiform nuclear labeling and a weaker
punctiform cytosolic labeling of CXCR4, as shown in Figure
3C. Regarding CXCL12 profile, a punctiform cytoplasmic
labeling apparently with a perinuclear concentration was
observed (Figure 3D). No differences were observed regarding
the levels of CXCR4 and CXCL12 by immunohistochemistry
between the cells that were treated with GB-CM compared
with the control cells at all time points analyzed. 

VEGFs and VEGFR2 were not affected following treatment of
HBMEC with GB-CM. We analyzed the protein levels, gene
expression or subcellular localization of VEGF-A, total VEGF,
and VEGFR2 in GB-CM-treated HBMEC. Specific bands of
VEGF-A were visualized at ~40 and 50 kD in HBMEC that
were treated with GB-CM as well as in the control cells (Figure
4A). The levels of VEGF-A protein in the cells that were treated
with GB-CM did not differ from that of the control cells (Figure
4A and B). Consistent with this observation, the total VEGF
gene expression in the GB-CM-treated HBMEC was not
significantly different from that of the control (Figure 4C). 

When we analyzed the levels of VEGFR2 and observed
specific bands at ~75 kD that correspond to a shorter isoform
containing only the extracellular domain of the receptor (55).
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The VEGFR2 protein levels were not significantly altered in
HBMEC that were treated with GB-CM compared to control
(Figure 4D).

WNT5a was not affected following treatment of HBMEC with
GB-CM. We next assayed for the levels of the WNT5a gene
expression and protein in HBMEC treated with GB-CM
compared to untreated cells.

WNT5a was detected in both treated and untreated
HBMEC. WNT5a-specific bands were detected at ~ 45 kD
at all time points analyzed. As shown in Figure 5A,
incubation of HBMEC with GB-CM did not significantly
alter WNT5a levels at any of the analyzed time points. To
complement the protein analysis, we also analyzed the
WNT5a mRNA levels by performing semiquantitative PCR.
We detected bands between 200 and 300 bp, which
demonstrated WNT5a-specific cDNA amplification (Figure
5B). WNT5a gene expression was not altered following
treatment of HBMEC at the various time points in
comparison to the control cells.

Discussion

Angiogenesis is essential for efficient GB growth and
expansion (56). Several factors that are secreted by both tumor
cells and blood vessel EC have been reported to participate in
the process of angiogenesis in tumors (37, 57-59). Among
these factors, VEGF (60-62), WNT (58, 63), metalloproteases
(64, 65) and chemokines (20, 66) are prominent. However,
regarding the molecular communication between GB and
blood vessel EC, few studies have focused specifically on the
effects of factors secreted by GB on the expression of
angiogenic factors by EC (52).

In the present study, we analyzed whether factors secreted
by GB would influence EC in brain microvasculature in vitro.
To answer this question, we first established a model of
molecular communication between GB and HBMEC cells. The
GBM02 cells were derived from a secondary GB recurrent
tumor that had not been treated with chemotherapy or
radiotherapy (67). The GBM11 cells were derived from a
recurrent GB that had previously been treated with
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Figure 1. HBMEC migration, but not proliferation, was modified by GB-CM treatment. (A) The proliferation rate is expressed by the number of
HBMEC that incorporated BrdU. The HBMEC control is represented by the light gray bars, and the HBMEC that were treated with GB-CM are
represented with (+) and by dark gray bars. The HBMEC proliferation was not changed when these cells were treated with GB-CM for 24, 48 or
72 h. (B) Migration rate analysis by scratch assay. After wounding the cell monolayer, the HBMEC were treated or not with GB-CM. The monolayer
wound areas were measured at 0, 24 and 48 h after treatment. Greater migration of the HBMEC that were treated with GB-CM for 48 h was
observed compared to the untreated cells (*p<0.05). The scale bar corresponds to 1 μm. Statistical analysis was performed to compare the wound
area in the GB-CM-treated cells with the wound area of untreated cells relative to the area at 0 h. The analysis was performed using results from
duplicates for each condition in three independent experiments. The bars correspond to the mean±standard deviation values.



chemotherapy and radiotherapy and was resistant to
chemotherapy (4). Due to the heterogeneity of GB (68), we
have chosen to work with different GB cells. To minimize
biological variability and obtain results that could be
generalized, we treated HBMEC with a mixture of CM derived
from both cell lines (GB-CM) (47). The simulation of cellular

communication through CM treatment is a well-established
method that has been used in several studies (67, 69, 70). 

Our study investigated whether GB-CM influence HBMEC
proliferation. We did not observe a difference in the
proliferation rate of GB-CM-treated HBMEC at the selected
time points. However, HBMEC proliferation was increased
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Figure 2. HBMEC treated with GB-CM increased MMP-9. HBMEC that were treated with GB-CM are represented by (+). (A) MMP-9 protein analysis
by western blot. The densitometric ratios between the MMP-9 band and the loading control (α-tubulin) are plotted in the graph. Comparisons of the
levels of MMP-9 in the treated and untreated cells showed a significant increase (*p<0.05) after 48 h and 72 h of treatment. (B) MMP-9 cell localization.
MMP-9 (green) and the nuclei (DAPI, blue). The densitometric ratios of total MMP-9 signal per total DAPI signal are plotted in the graph. A significant
increase in MMP-9 immunolabeling was observed in the cells that were treated with GB-CM for 72 h compared to the untreated cells. The scale bar
represents 50 μm, and the scale bar for zoomed cells (in dashed square) represents 10 μm. The analysis was performed using the data from three
independent experiments. (C) MMP-9 relative gene expression by semiquantitative PCR. Specific bands at ~200 bp were detected. The densitometric
ratios between MMP-9 and endogenous gene (β-actin) amplified bands are plotted in the graph. There was no difference in MMP-9 gene expression
in the treated cells compared to the controls. The results from two biological replicates with technical triplicates were used for this analysis. The
statistical analysis was performed using the paired samples t-test (*p<0.05). The bars correspond to the mean±standard deviation values.
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Figure 3. The CXCL12-CXCR4-CXCR7 axis in HBMEC treated with GB-CM. HBMEC that were treated with GB-CM are represented by (+). (A)
CXCR4 gene expression analysis. CXCR4 expression was significantly decreased in HBMEC treated with GB-CM for 72 h compared to the control.
The relative gene expression was analyzed using data from the cells that were treated with GB-CM compared with the untreated cells. β-actin gene
was used as the gene control. The analysis was performed with data from two independent experiments using technical triplicates. (B) CXCR4 protein
analysis by western blot. The densitometric ratios between the CXCR4 band and the loading control (α-tubulin) are plotted in the graph. We observed
a significant increase of CXCR4 in the HBMEC that were treated with GB-CM for 72 h compared to the control. Western blot and respective
densitometric ratio analysis showed no difference in the amount of CXCR7 in the cells that were treated with GB-CM compared to control cells. α-
Tubulin was used as a loading control and three biological replicates were performed. (C) CXCR4 demonstrated a cytoplasmic and nuclear labeling.
There was no difference in the quantification of CXCR4 immunolabeling between treated and nontreated HBMEC. (D) CXCL12 labeling pattern.
There was no difference in the quantification of CXCL12 immunolabeling between treated and nontreated HBMEC. CXCR4 or CXCL12 labeling
(green) and nuclear labeling (DAPI, blue). The scale bar represents 50 μm, and the scale bar for zoomed cells (in dashed square) represents 10 μm.
The analysis was performed using data from three independent experiments (*p<0.05). The bars correspond to the mean±standard deviation values.



when they were maintained in coculture with GB U87, as
demonstrated by Ki-67 labeling (52). Moreover, Giusti and
colleagues (2016) demonstrated that treatment with various
concentrations of GB U251 extracellular vesicles (EV) that
contained IL-6, IL-8, VEGF and CXCR4 increased HBMEC
proliferation (53). It is noteworthy that concentrated EV were
used in those studies. Therefore, the influence of GB or GB-
derived molecules on EC proliferation requires further studies. 

We observed a significant increase in the migration rates
of the HBMEC that were treated with GB-CM compared to
HBMEC controls. Our results corroborate that of Giusti and
colleagues (2016), who observed increased migratory rates in
HBMEC that were exposed to various concentrations of U251
EV (6 and 8 μg/ml) (53).

Further, we analyzed which angiogenic factors were
modulated in HBMEC following treatment with GB-CM. We
analyzed the profile of protein or gene expression of important
angiogenic factors that are involved in EC migration and
proliferation.

Metalloproteases are zinc-dependent endopeptidases that
mediate ECM degradation and dissociation. These enzymes
are produced and secreted by both EC and GB cells, and they
are important for both the invasive features of gliomas and for
angiogenesis in these tumors (28, 71). We observed a
significant increase in MMP-9 protein levels in the HBMEC
that were treated with GB-CM. These data demonstrated that
the factors secreted by the GB cells influenced HBMEC to
modulate the levels of MMP-9. In agreement, Ngo and Harley
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Figure 4. VEGFs and VEGFR-2 levels were not modified in HBMEC that were treated with GB-CM. The HBMEC that were treated with GB-CM
are identified by (+). (A) VEGF-A protein analysis. Bands at ~40 and 50 kD are observed. There was no difference in the levels of VEGF-A. (B)
VEGF-A cytolocalization. VEGF-A labeling (green) and the nuclei (DAPI, blue). There was no difference in VEGF-A immunolabeling quantification.
The scale bar represents 50 μm, and the scale bar for zoomed cells (in dashed square) represents 10 μm. (C) Total VEGF gene expression analysis.
Relative analysis was performed using total VEGF mRNA compared to mRNA of beta-actin using untreated samples as controls. We did not observe
significant differences in VEGF gene expression. (D) VEGFR-2 protein analysis. VEGFR-2 was detected in HBMEC at ~75 kD. There was no
difference in the levels of VEGFR-2 between treated and untreated HBMEC. The analysis was performed using results from three biological
replicates for western blotting and immunocytochemistry analysis, and from two independent experiments for qRT-PCR, with technical triplicates.
The bars correspond to the mean±standard deviation values.



(2017) have also observed a significant increase in MMP-9 in
their culture model: HUVEC (human umbilical vein
endothelial cells) cocultured with human fibroblasts and GB
U87 in a hydrogel (72). Kenig et al. (2010) observed increased
MMP-9 levels in both U87 and HMEC-1 cells (human
microvascular endothelial cells) under coculture conditions
(52). These authors suggested that the presence of HMEC-1
resulted in increased invasion by the U87 cells that was
mediated by positive regulation and MMP-9 secretion by both
EC and tumor cells. However, it is noteworthy that the effects
on the invasive potential of HMEC-1 co-cultivated with U87
cells were not examined in that study. Therefore, for the first
time, our study demonstrates the parallel increase of MMP-9
and the migratory rate of EC exposed to GB-CM.

CXCL12 and its receptors CXCR4 and CXCR7 regulate
several cellular functions, such as endothelial and tumor cell
migration and angiogenesis. These proteins are
overexpressed in malignant gliomas compared to normal
tissues and are involved in tumor angiogenesis (34, 73). We
have observed an early sustained increase in the CXCR4
mRNA levels. The inverse correlation between the protein
and mRNA levels has been demonstrated in some studies.
Different mechanisms act in mRNA and protein stabilization,
and their levels might be in fact different (74). For instance,
Tang et al. (2017) suggested that the relationship between
CXCR4 mRNA and protein expression in EC is not strictly
linear in vitro in hypoxic conditions (75). Nevertheless, we
observed a significant increase in CXCR4 protein levels in
HBMEC that were treated with GB-CM at 72h. We suggest
that the modulation of MMP-9 and CXCR4 in ECs, in

addition to the GB-derived angiogenic factors, contributes to
increased migration rates of HBMEC that we demonstrated
with the scratch assay. 

We did not observe a significant increase in either VEGF-A
or total VEGF levels in the treated HBMEC at any of the time
points analyzed. VEGF is a potent mitogen for EC, and it is the
major growth factor involved in angiogenesis. The VEGF family
members are essential for tumor angiogenesis (13) and VEGF is
expressed by both EC and GB cells (76-79). Domigan et al.
(2015) showed that EC are dependent on endogenous VEGF for
survival (80). In the EC, VEGFs act through VEGFR-1 and
VEGFR-2 tyrosine kinase receptors. In adulthood, VEGFR-2 is
believed to be the signal transducer for physiological and
pathological angiogenesis due to its high tyrosine kinase activity
(81). We did not observe differences in VEGFR-2 (75 kD
isoform) between the HBMEC that were treated with GB-CM
and the control cells. Therefore, further studies are still necessary
to clarify the role of VEGFR-2 isoform (82), and other VEGFR
receptors in the EC and GB crosstalk. 

The GB-derived secreted angiogenic factors may influence
the migration of the ECs. Here, we cannot discard this
hypothesis. Further in vitro and in vivo studies are necessary
to explore the role of MMP-9 and CXCR4 synthesized by EC
in the increased migration of HBMEC. However, we would
like to highlight that the data we obtained by analyzing key
angiogenic molecules in HBMEC matches the results of our
migration and proliferation functional assays. We observed
increases in MMP-9 and CXCR4 protein levels in HBMEC
that were treated with GB-CM. Both of these factors are
involved in migration and angiogenesis, consistent with the
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Figure 5. WNT5a gene expression and protein levels were not modified in HBMEC that were treated with GB-CM. The HBMEC treated with GB-CM are
designated by (+). (A) Protein analysis of WNT5a. Bands at ~45 kD were detected in HBMEC at all time points and conditions analyzed. There was no
difference of WNT5a in the HBMEC that were treated with GB-CM compared to the control. α-Tubulin was used as a loading control. Three independent
biological replicates were performed. (B) WNT5a expression was detected and quantified using semiquantitative PCR. WNT5a relative expression was
determined in HBMEC that were treated with GB-CM and in nontreated cells. Specific bands between 200 and 300 bp were detected. The densitometric
ratios between the amplified bands for WNT5a and the endogenous gene (β-actin) are plotted in the graph. No difference was observed. The results from
two independent biological samples using technical triplicates were used in the analysis. The bars correspond to the mean±standard deviation values. 



migration rate in these cells. However, and consistent with the
absence of changes in EC proliferation, we did not observe
differences in molecules that are involved in EC proliferation,
such as VEGF and WNT5a. 

Anti-angiogenic therapy with bevacizumab was introduced
to inhibit vascular endothelial growth factor (VEGF)-mediated
tumor neovascularization in several cancers including GB (83).
Unfortunately, the results from clinical trials did not meet
expectations. Patients failed to respond to anti-angiogenic
therapy or developed resistance (84). Recent evidence indicates
that the dogma of tumor neovascularization that is solely
dependent on VEGF pathway may be too simplistic (83).
Limiting tumor angiogenesis has been a goal for anticancer
therapy, but traditional growth factor-targeted anti-angiogenic
treatments have had limited success. In recent years, it has
increasingly been recognized that focusing on altered tumor EC
metabolism might lead to compelling alternative anti-angiogenic
strategies (85), which our study has accomplished. 
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