
Abstract. Background/Aim: Aldehyde dehydrogenase 1
(ALDH1) is known as a breast cancer stem cell (CSC) marker.
This study aimed to identify genes associated with ALDH1.
Materials and Methods: ALDH1-positive and -negative breast
cancer cells were isolated using laser capture microdissection
from five tissue samples of ALDH1-positive breast cancer
patients. Messenger RNA expression levels were compared
between ALDH1-positive and -negative cells. Results: We
found 104 differentially expressed genes between ALDH1-
positive and -negative cells. Gene ontology and pathway
analysis revealed that these genes were correlated with CSC
functions and pathways. Network analyses identified 10 genes
that were closely associated with ALDH1. We validated these
10 genes utilizing The Cancer Genome Atlas and the
Molecular Taxonomy of Breast Cancer International
Consortium cohort, and found that they were associated with
ALDH1 expression and correlated with Wnt pathway
signaling. Conclusion: The 10 genes we identified could be
potential targets for CSC therapy of breast cancer.

Aldehyde dehydrogenase 1 (ALDH1) has been identified as
a marker of breast cancer stem cells (CSCs) (1). Two meta-
analyses on ALDH1 function in breast cancer have been
reported (2, 3). One of these studies analyzed 15 publications
on ALDH1A1 and revealed that ALDH1A1 expression was
significantly associated with tumor size, nodal status,
histological grade, estrogen receptor (ER)- and progesterone
receptor (PR)-negativity, and epidermal growth factor
receptor 2 (HER2)-positivity. The prognosis in patients with
ALDH1A1-positive tumors was worse than that in patients
with ALDH1-negative tumors (2). In the other meta-analysis
on 12 eligible studies, the results were similar except for
tumor size and nodal status (3).

We also previously examined ALDH1A1 expression in
653 invasive breast cancer cases using core needle biopsy
specimens at diagnosis (4). ALDH1 expression was
examined in tumor cells and detected in 139 of the 653 cases
(21.3%). The association of ALDH1 expression with
clinicopathological features was consistent with that shown
in previous meta-analyses. According to intrinsic subtypes,
ALDH1-positive cases were found in the luminal type
(12.2%), luminal-HER2 type (36.5%), HER2-enriched type
(37.9%), and triple-negative type (30.0%).

Based on these results, it is clear that ALDH1 is
associated with poor clinical outcomes in breast cancer
patients, probably through regulating CSC features. ALDH1
is known as an enzyme that catalyzes biosynthesis of retinoic
acid (RA) by oxidizing retinal and aliphatic aldehydes and
plays a role in detoxification (5). However, questions remain
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as to how ALDH1 affects biological features of breast cancer
cells and why this gene acts as a marker of CSCs. 

In this study, we focused on triple-negative breast cancer
(TNBC) because some cellular populations of TNBC were
shown to possess stem cell features in comprehensive molecular
analysis (6, 7). We aimed to identify genes associated with
ALDH1 function as potential target genes in CSC that could be
used to develop treatment for TNBC.

Materials and Methods
Patients and samples. Tissue samples were obtained from patients who
underwent surgery at the Yokohama City University Medical Center.
Five patients with triple-negative breast cancer (TNBC) and ALDH1A1
expression were enrolled in this study. The patients did not receive any
preoperative treatments to avoid potential gene modification. This study
was approved by the Institutional Review Board of Yokohama City
University (D1207027). All procedures performed on human
participants were in accordance with the ethical standards of the
institutional research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards. The patients
provided informed consent prior to inclusion in the study.

Histopathological and immunohistological staining. Hematoxylin
and eosin (H&E)-stained sections from each block were prepared to
determine the histological examination and diagnosis. To determine
the breast cancer subtype, immunohistochemistry (IHC) of paraffin-
embedded breast cancer tissues was performed to detect ER, PgR,
and HER2. ER-negative, PgR-negative, and HER2-negative tumors
were considered as TNBC. IHC was performed with an anti-
ALDH1A1 (EP1933Y, ab52492, Abcam, Cambridge, UK) antibody.
The IHC protocol with anti-ALDH1A1 was as previously described
(4). Representative images of the H&E and ALDH1A1 staining are
shown in Figure 1. 

Laser micro dissection of ALDH1-positive and ALDH1-negative
tumor cells for RNA extraction. ALDH1-positive and -negative cells

were dissected separately from the five TNBC tissue samples using
laser capture microdissection (LCM; PALM MicroBeam, Zeiss,
Germany). Representative images pre- and post-LCM are shown in
Figure 2. Then, the RNA was isolated from tumor tissue specimens
after LCM according to a proprietary procedure from Response
Genetics (Los Angeles, CA, USA) (8). Total RNA was analyzed
using Affymetrix GeneChip microarrays (Affymetrix Human
Genome U133 Plus 2.0 Array Thermo Fisher Scientific, Waltham,
MA, USA). We performed a microarray analysis of five ALDH1-
positive TNBC samples.

Microarray analysis to identify differentially expressed mRNAs
between ALDH1-positive and ALDH1-negative tumor cells. The
data were calibrated and standardized using Microarray Suite
version 5.0 (MAS 5.0) (9, 10). MAS5 is the most commonly used
and suitable method for microarray normalization. Following
standardization, we excluded genes with unreliable values or
values <300 for the quality of microarray data. We calculated the
fold change (FC) of gene expression (ALDH1-positive area vs.
ALDH1-negative area) and identified 104 genes with FC values
>2.0 or <0.5. 

Molecular network and statistical analyses. The 104 identified
genes were analyzed using the KeyMolnet knowledge database
(viewer program version 6.2, contents version 9.7.20180921161102)
(KM Data Inc.; www.km-data.jp) (11). KeyMolnet has manually
curated content on numerous associations among genes, proteins,
metabolites, microRNAs, and molecular annotations such as
diseases, pathological events, drug targets, and biomarker
information. The list of differentially expressed genes was imported
into KeyMolnet. The “start points and end points” network search
algorithm was performed using differentially expressed genes as the
start points and ALDH1 as the end-point to generate the network
and identify candidate regulatory molecules causing ALDH1
induction. The statistical significance in concordance between the
canonical pathways and the extracted network was evaluated using
an algorithm that counts the number of overlapping molecular
relations shared by both. This made it possible to identify the
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Figure 1. Representative images of histology of 5 triple negative breast cancer. Hematoxylin-eosin staining (upper) and immunohistochemistry of ALDH1A1
staining (bottom) from 5 patient samples are shown. All patients were diagnosed as invasive ductal breast cancer by H&E. Scale bar=200 μm.



canonical pathway exhibiting the most significant contribution to
the extracted network.

Gene expression analyses of the TCGA-BRCA and METABRIC
cohorts. We used two large publicly available cohorts, The Cancer
Genome Atlas (TCGA) (12) and the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) (13), to confirm the
clinical relevance of the identified genes. Normalized gene
expression data (log2 transcripts per million values) of primary
breast cancer tumors from female patients in the two cohorts were
obtained from the cBio Cancer Genomics data portal. Gene set
variation analysis (GSVA) was used to transform the gene expression
values into enrichment scores for the pathway (14). The GSVA score
for the HALLMARK_WNT_BETA_CATENIN_SIGNALING
mSigDb Hallmark gene set (15) was calculated for each tumor from
its gene expression. For each of the ALDH1-associated genes of
interest, patients from both cohorts were grouped into high- and low-
expression groups based on the within-cohort 10th percentile gene
expression value. The boxplots depicted median, inter-quartile range,

and outliers using the Tukey method. The Hallmark gene set scores,
as well as the ALDH1 gene expression values of the two groups
were compared using one-way ANOVA.

Results

Identification of genes associated with ALDH1A1. The total
RNA isolated from ALDH1A1-positive and -negative cells
dissected using LCM was subjected to gene expression
analysis using Affymetrix GeneChip microarrays (Figure 2).
The data on up-regulation and down-regulation of genes
were recorded. Initially 54,682 genes were extracted, and
32,264 genes were selected after background noise
elimination. The GAPDH as a housekeeping gene and
ALDH1A1 from our microarray datasets are shown in Tables
I and II. High expression of GAPDH was detected in all
samples (Table I). On the other hand, the expression of
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Figure 2. Representative images of laser microdissection of ALDH1-positive and -negative breast cancer cells. Immunohistochemistry analysis
revealed ALDH1A1-positive cells (A) and -negative cells (B). The slide with hematoxylin-eosin staining was marked according to IHC (C, D). Laser
microdissection was performed on ALDH1A1-positive (E) and -negative cells (F).



ALDH1A1 varied among samples, and not all ALDH1A1-
positive cells expressed ALDH1A1 compared to ALDH1A1-
negative cells (Table II).

The fold change (FC) in gene expression (ALDH1A1-
positive area vs. ALDH1 A1-negative area) was calculated, and

genes with FC values >2 or <0.5 in each of the five cases were
identified (Table III). Among them, genes that were commonly
different between the ADH1A1-positive and ALDH1A1-
negative cells in the five cases were extracted. With regard to
the FC in gene expression, 63 genes showed two-fold higher
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Table I. GAPDH signaling in microarray data.

ID Patients Condition Detection Ch1 Processed 
raw signal signal

1 1 ALDH1A1-positive P 3730.377 –1.9939966
2 1 ALDH1A1-negative P 14619.6 0
3 2 ALDH1A1-positive P 10622.08 0.40078735
4 2 ALDH1A1-negative P 7824.224 0
5 3 ALDH1A1-positive P 11867.65 1.4744778
6 3 ALDH1A1-negative P 4345.466 0
7 4 ALDH1A1-positive P 5395.896 –0.8161192
8 4 ALDH1A1-negative P 9130.295 0
9 5 ALDH1A1-positive P 2573.483 0.50331974
10 5 ALDH1A1-negative P 1781.484 0

P: Present, M: marginal, A: absent.

Table II. ALDH1A1 signaling in microarray data.

ID Patients Condition Detection Ch1 Processed 
raw signal signal

1 1 ALDH1A1-positive P 1340.314 5.8000393
2 1 ALDH1A1-negative A 23.66741 0
3 2 ALDH1A1-positive P 788.4848 1.681387
4 2 ALDH1A1-negative P 239.0706 0
5 3 ALDH1A1-positive A 29.62089 -0.02503395
6 3 ALDH1A1-negative A 30.66673 0
7 4 ALDH1A1-positive M 257.9763 -0.6529236
8 4 ALDH1A1-negative A 389.8291 0
9 5 ALDH1A1-positive A 15.1019 -1.109621
10 5 ALDH1A1-negative A 31.97685 0

P: Present, M: marginal, A: absent.

Figure 3. Network analysis of genes associated with ALDH1. The list of the 104 differentially expressed genes was imported into KeyMolnet, and
then the “start points and end points” network search algorithm was performed using differentially expressed genes as the start points and ALDH1
as the end-point, to generate the network and identify candidate regulatory molecules causing ALDH1 induction.



and 41 genes showed two-fold lower expression in ALDH1A1-
positive cells compared to ALDH1-negative cells.

Gene ontology and pathway analysis. Gene Ontology (GO)
analysis revealed that the identified genes were associated with
stem cell function such as organ morphogenesis, cell
differentiation, metabolic homeostasis, and regulation of TOR
signaling pathways (Table IV). The results of pathway analysis
are shown in Table V. It also revealed genes associated with
metabolism alteration including cyanoamino acid, steroid, and
fatty acid biosynthesis pathways. The ABC transporters and
nucleotide excision repair that are associated with stemness
were also altered among ALDH1-positive and -negative cells.

Network analysis of genes related to ALDH1A1. The list of
the 104 differentially expressed genes was imported into
KeyMolnet. Then, the “start points and end points” network
search algorithm was performed using the differentially

expressed genes as the start points and ALDH1A1 as the end
point to generate the network and identify candidate
regulatory molecules causing ALDH1A1 induction (Figure
3). Network analysis extracted 10 transcription factors:
SMAD4, RARα, MUC1, HASH1, C/EBPβ, PITX3, BRD4,
LXR, PCAF, and SIRT2. These factors were directly or
indirectly associated with ALDH1A1 expression.

Gene expression analyses of TCGA-BRCA and METABRIC
cohorts. We validated our data using two large publicly
available cohorts, The Cancer Genome Atlas (TCGA) and the
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) to identify the association between
the 10 genes, ALDH1A1, and the Wnt signaling pathway that
are related to cancer stem cell function (16). The results are
shown in Figure 4. Indeed, several genes including C/EBPβ,
NR1H3 (LXR), MUC1, and SIRT2 were associated with
ALDH1A1 expression in both datasets. The expression levels
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Table III. Number of up/down-regulated genes in 5 cases.

Case 1 Case 2 Case 3 Case 4 Case 5

Up Down Up Down Up Down Up Down Up Down

Genes 9,106 9,281 9,253 8,584 7,015 6,830 9,866 10,030 7,330 7,694

Table IV. Gene ontology analysis.

Category #in category #overlaps p-Value

Organ morphogenesis // non-traceable author statement 21 2 3.25E-04
Smooth muscle contraction // inferred from electronic annotation 22 2 3.54E-04
Cell differentiation // non-traceable author statement 53 2 0.001861
Ectoderm and mesoderm interaction // traceable author statement 1 1 0.0023
Regulation of tor signaling pathway // inferred from direct assay 1 1 0.0023
Glycosylphosphatidylinositol anchor biosynthetic process // inferred from electronic annotation 61 2 0.002433
Circadian rhythm // inferred from electronic annotation 71 2 0.00325
Cellular membrane fusion // inferred from mutant phenotype 2 1 0.003448
Positive regulation of fibroblast proliferation // non-traceable author statement 2 1 0.003448
Platelet alpha granule organization // inferred from mutant phenotype 2 1 0.003448
B cell costimulation // inferred from electronic annotation 3 1 0.004595
Cell proliferation // non-traceable author statement 90 2 0.005104
Glucose homeostasis // inferred from electronic annotation 90 2 0.005104
Melanosome localization // inferred from direct assay 4 1 0.005741
Lysosome localization // inferred from direct assay 4 1 0.005741
Immunoglobulin secretion // inferred from electronic annotation 5 1 0.006885
Positive regulation of germinal center formation // inferred from electronic annotation 5 1 0.006885
Positive regulation of membrane potential // inferred from electronic annotation 6 1 0.008028
Initiation of primordial ovarian follicle growth // inferred from electronic annotation 7 1 0.00917
Positive regulation of cd4-positive, cd25-positive, alpha-beta regulatory t cell 7 1 0.00917
differentiation // inferred from electronic annotation



of BRD4, C/EBPβ, ASCL1, NR1H2 (LXR), MUC1, PITX3,
RARα, SIRT2, and SMAD4 were correlated with Wnt pathway
signaling.

Discussion

In this study, we identified differentially expressed genes
between ALDH1-positive and -negative breast cancer
tissue samples. The difference in gene expression between
ALDH1A1-positive and -negative cells in the same tumor
may provide an explanation regarding the mechanism
behind ALDH1A1 function in cancer stemness. Notably, 63
genes were up-regulated whereas 41 genes were down-
regulated in ALDH1A1-positive cells compared to
ALDH1A1-negative cells. CSCs exhibited self-renewal
and tumor initiating properties, and treatment resistance
(17). Furthermore, CSCs showed metabolic alterations in
glycolytic (18), lipid (19), and steroid biosynthesis (20).
Indeed, GO analysis revealed stemness related categories
such as organ morphogenesis, cell differentiation,
metabolic alterations, and regulation of TOR signaling
pathways. Likewise, the pathway analysis also revealed
altered gene expression in stemness-related pathways, such
as several metabolic and treatment resistance mechanisms
including ABC transporters and nucleotide excision repair
among ALDH1A1-positive cells compared to ALDH1A1-
negative cells. 

Network analysis identified 10 transcription factors (e.g.,
SMAD4, RARα, MUC1, HASH1, C/EBPβ, Pitx3, BRD4,
LXR, PCAF, and SIRT2) that were associated with
ALDH1A1. For example, SMAD4 is the main mediator of
TGF-β signaling pathway that is involved in many
biological activities including fibrosis, embryonic
development, wound healing, tumor development, cell
differentiation, apoptosis, homeostasis and immune
response regulation. In the complex with other transcription
factors, SMAD4 acts as a regulator of the expression of
target genes such as Twist1, Snail, and Slug that are
associated with stemness (21). We then validated the
association between these 10 factors and ALDH1A1
expression or the CSC-related signaling pathway by
utilizing two large publicly available cohorts, The Cancer
Genome Atlas (TCGA) (12) and the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC)
(13). These two cohorts include all subtypes of breast
cancer. We have used these cohorts to demonstrate the
clinical relevance of several studies (22-30). Indeed, several
genes, including C/EBPβ (31), NR1H3 (LXR) (32), MUC1
(33), and SIRT2 (34) were associated with ALDH1A1
expression in both datasets. The expression of BRD4 (35),
C/EBPβ, ASCL1 (hASH1) (36), NR1H2 (LXR), MUC1,
PITX3 (37), RARα (5), SIRT2, and SMAD4 (38) were
correlated with the Wnt signaling pathway, which plays an
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Table V. Pathway analysis.

Up-regulated pathways Total Up %
genes regulating 

genes

Cyanoamino acid metabolism 7 1 14.3%
Glycosylphosphatidylinositol-anchor 34 4 11.8%
biosynthesis

Steroid biosynthesis 27 3 11.1%
Fatty acid biosynthesis 10 1 10.0%
SNARE interactions in vesicular 71 7 9.9%
transport

ABC transporters 43 4 9.3%
Nucleotide excision repair 57 5 8.8%
Glycosaminoglycan biosynthesis - 23 2 8.7%
chondroitin sulfate

Long-term potentiation 108 9 8.3%
Taurine and hypotaurine metabolism 13 1 7.7%
B cell receptor signaling pathway 140 10 7.1%
African trypanosomiasis 43 3 7.0%
TGF-beta signaling pathway 147 10 6.8%
Salmonella infection 135 9 6.7%
RIG-I-like receptor signaling 90 6 6.7%
pathway

Lysine degradation 91 6 6.6%
MAPK signaling pathway 420 27 6.4%
Allograft rejection 63 4 6.3%
Osteoclast differentiation 224 14 6.3%
Autoimmune thyroid disease 64 4 6.3%

Down regulating pathways Total Down %
genes regulating 

genes

Caffeine metabolism 5 2 40.0%
Fatty acid biosynthesis 10 2 20.0%
Steroid biosynthesis 27 5 18.5%
Cyanoamino acid metabolism 7 1 14.3%
Linoleic acid metabolism 23 3 13.0%
Nucleotide excision repair 57 6 10.5%
Vitamin digestion and absorption 19 2 10.5%
Glycosaminoglycan biosynthesis - 30 3 10.0%
heparan sulfate

alpha-Linolenic acid metabolism 20 2 10.0%
mRNA surveillance pathway 153 15 9.8%
Cardiac muscle contraction 81 7 8.6%
Ribosome 125 10 8.0%
Metabolism of xenobiotics 88 7 8.0%
by cytochrome P450

Fat digestion and absorption 39 3 7.7%
Mismatch repair 26 2 7.7%
Retinol metabolism 69 5 7.2%
ABC transporters 43 3 7.0%
DNA replication 44 3 6.8%
Endocrine and other factor-regulated 79 5 6.3%
calcium reabsorption

Oxidative phosphorylation 159 10 6.3%

SNARE: Soluble N-ethylmaleimide-sensitive factor attachment protein
receptor, ABC: ATP-binding cassette, TGF: transforming growth factor,
RIG-I: retinoic acid-inducible gene-I, MAPK: mitogen-activated protein
kinase, RNA: ribonucleic acid, DNA: deoxyribonucleic acid.
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Figure 4. Gene expression analyses of the TCGA-BRCA and METABRIC cohorts. For each of the 10 ALDH1-associated genes, breast cancers in
the TCGA-BRCA (n=1,065) or METABRIC (n=1,903) cohorts were grouped into high and low expression groups based on the within-cohort 10th
percentile value of gene expression. The two groups were compared for tumor expression of ALDH1 and of genes up-regulated by the Wnt-β catenin
signaling pathway. Boxplots of ALDH1 gene expression among low and high expression groups of the 11 genes are shown for the TCGA-BRCA
(Figure 3A) and METABRIC (B) cohorts. Boxplots of GSVA scores for the Hallmark of Wnt-β catenin signaling pathway among low and high
expression groups of the 11 genes are shown for the TCGA-BRCA (C) and METABRIC (D) cohorts. ALDH1A1, aldehyde dehydrogenase 1 family,
member A1; BRD4, bromodomain-containing protein 4; C/EBPβ, CCAAT/enhancer-binding protein beta; ASCL1, achaete-scute homolog 1; NR1H2,
liver X receptor beta; NR1H3, liver X receptor alpha; MUC1, mucin 1, cell surface associated; KAT2B, K lysine acetyltransferase 2B; PITX3,
pituitary homeobox 3; RARα, retinoic acid receptor alpha; SIRT2, NAD-dependent deacetylase sirtuin 2; and SMAD4, SMAD family member 4.



important role in self-renewal and differentiation of stem
cells (16). Interestingly, most of these 10 factors were
associated with poor survival outcome in TCGA cohorts
(data not shown).

Among the ALDH1A1-positive samples, some showed low
expression levels of ALDH1A1 in our microarray data. The
discordance of the protein and mRNA expression levels was
presumably derived from the difference in transcriptional
activity of the cells or changes in transcriptional efficacy due
to post-transcriptional modification (39). For example,
microRNAs are recognized as one of the key mechanisms of
the mRNA transcription regulatory network (40). As we have
previously demonstrated the importance of ALDH1A1 protein
expression in breast cancer patients (4), we have conducted
microarray and network analyses based on the expression of
the ALDH1A1 protein.

Although we validated our data by utilizing two large
publicly available cohorts, subsequent studies involving the
latest techniques such as single-cell sequencing are warranted
to provide more specific information regarding the
mechanisms of the regulation of breast CSCs (41). The
specific mechanisms of regulation of ALDH1 in CSCs remain
unclear. However, regulation of RA, reactive oxygen species
(ROS), and detoxification by reactive aldehyde metabolism
are considered to be closely related to functional roles of
CSCs. ALDH1 has 19 human isozymes subdivided among 11
families and 4 subfamilies. Among them, ALDH1A1 and
ALDH1A3 isoforms are particularly associated with CSCs
owing to their roles mentioned above to exert resistance to
radiotherapy and chemotherapy (5, 42). We only examined
the ALDH1A1 isoform in this study. Thus, it is intriguing to
perform the same analysis with ALDH1A3 as we did with
ALDH1A1 in this study.

In conclusion, we found alterations of expression of 104
genes among ALDH1- positive and -negative cells that
were associated with CSC functions. Network analysis
showed that 10 genes were associated with ALDH1
expression. Most of these 10 genes have already been
shown to reinforce their critical roles in maintaining stem
cell features, providing a rationale for ALDH1A1 being a
stem cell marker of breast cancer. These genes can be
potential targets for cancer stem cell therapy, particularly
for treating incurable breast cancer. 
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