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Abstract. Background/Aim: Dietary interventions like time-
restricted feeding (TRF) show promising anti-cancer
properties. We examined whether therapeutic TRF alone or
combined with immunotherapy would diminish renal tumor
growth in mice of varying body weights. Materials and
Methods: Young (7 week) chow-fed or older (27 week) high-
fat diet (HFD)-fed BALB/c mice were orthotopically injected
with renal tumor cells expressing luciferase. After tumor
establishment, mice were randomized to ad libitum feeding or
TRF +/- anti-CTLA-4. Body composition, tumor viability and
growth, and immune responses were quantified. Results: TRF
alone reduced renal tumor bioluminescence in older HFD-
fed, but not young chow-fed mice. In the latter, TRF mitigated
tumor-induced loss of lean- and fat-mass. However, TRF did
not alter excised renal tumor weights or intratumoral immune
responses and failed to improve anti-CTLA-4 outcomes in any
mice. Conclusion: Therapeutic TRF exhibits modest anti-
cancer properties but fails to improve anti-CTLA-4 immune
checkpoint blockade in murine renal cancer.

There is growing interest in harnessing dietary interventions
to combat not only widespread overweight and obesity in the
adult population, but also to boost immune function, blunt
tumor growth, and improve cancer treatment efficacy (1, 2).
Time-restricted feeding (TRF) is a type of intermittent
fasting that limits food intake to a set number of hours each
day (3). The beneficial effects of TRF are mediated, in part,
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by attenuating inflammation and oxidative stress, and
restoring protective anti-tumor immunity (2). TRF improves
chemotherapy-based cancer treatment outcomes without
compromising CD8* T cell anti-tumor immune responses in
all murine tumor models examined thus far (4-8). However,
the impact of TRF on the balance between pro-tumor
immunosuppressive populations (e.g., myeloid-derived
suppressor cells [MDSCs]) and anti-tumor immune
mechanisms remains unknown.

At this time, no clinical trial or preclinical study has
investigated TRF in  combination with cancer
immunotherapy. Immune checkpoint blockade agents, such
as anti-cytotoxic T-lymphocyte-associated protein 4 (anti-
CTLA-4) and anti-programmed death-1 (anti-PD-1), are
designed to enhance protective anti-tumor immune
mechanisms and are FDA-approved for the treatment of
many types of advanced cancers, including kidney cancer (9,
10). Despite demonstrating clinical benefit, typically <50%
of patients receiving immunotherapies experience objective,
durable responses (11, 12). Although multiple factors
contribute to this lack of response (13, 14), evidence is
mounting that modifiable lifestyle factors, like diet and
elevated adiposity, can impact therapeutic outcomes (2, 15-
17). This is particularly important in the context of renal
cancer, where obesity is a known risk factor for cancer
development (2, 15, 16, 18). Additionally, two important
caveats to published data in preclinical cancer modeling are
that these studies were limited to investigating chemotherapy
and were conducted using young, lean mice that do not
reflect the aging, and frequently overweight, population of
cancer patients who receive therapy (19).

Although dietary interventions such as TRF may be
effective at reducing tumor burden and/or enhancing
chemotherapy or immunotherapy outcomes, concerns remain
about the possibility for these approaches to exacerbate the
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loss of lean mass in cancer patients who may already be
struggling with cachexia and loss of appetite (20). Therefore,
additional studies are needed prior to translating these
approaches into clinical use.

Here, we sought to evaluate the safety and efficacy of
TRF in mice with established renal tumors. We also asked if
TRF could improve anti-CTLA-4 outcomes. Our study is the
first to test whether TRF can enhance the efficacy of
immunotherapy. To mimic the range of cancer patients seen
clinically, we used young, chow-fed mice, as well as older,
high-fat diet (HFD)-fed mice that were categorized as either
normal weight or overweight. Our findings illustrate the
potential benefits and drawbacks of translating TRF use into
cancer patients, particularly those receiving anti-CTLA-4
checkpoint blockade.

Materials and Methods

Animals and diets. Female BALB/c mice were purchased from the
NClI-Frederick colony maintained by Charles River Laboratories
(Wilmington, MA, USA) at 7-8 weeks of age. Upon receipt, all mice
were acclimated in-house for one week and fed a standard low-fat
chow diet (NIH-31; LabDiet, St. Louis, MO, USA). Mice were then
randomized to immediate in vivo tumor modeling experiments or to
20 weeks of ad libitum (AL) high-fat diet (HFD, catalog #12492;
Research Diets, New Brunswick, NJ, USA) feeding to generate
normal weight (N-WT) and overweight (OVER-WT) mice. These
groups were stratified after 20 weeks on HFD by the median pre-
tumor body weight (i.e., N-WT <27.1 g, mean=24.9 g versus OVER-
WT >27.1 g, mean=30.8 g). HFD-matched N-WT and OVER-WT
mice were then used for in vivo tumor modeling experiments. All
mice were housed in standard caging under pathogen-free conditions
in 12:12 light:dark cycles (dark cycle: 6 PM — 6 AM) at 22°C (72°F
average). All animal procedures were approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of
Alabama at Birmingham, an AAALAC-accredited institution.

Murine in vivo tumor modeling. The Renca cell line (derived from
and syngeneic to BALB/c mice) was purchased from the American
Type Culture Collection (ATCC; Manassas, VA, USA), engineered
to express firefly-luciferase, and cultured as described (21-23). Cells
were confirmed negative for mycoplasma, passaged, and used at the
same passage number to limit experimental variation. Intra-renal
tumor challenges were performed as described (21-23). At day 6
post-tumor challenge, young, chow-fed (n=4-6/group) or HFD-fed
N-WT (n=6-8/group) or OVER-WT (n=7-10/group) mice were
randomized to AL feeding or TRF, wherein food was withheld
during the light cycle (6 AM to 6 PM). To determine if TRF
impacted body weight over time, murine body weights were
recorded every four days for young, chow-fed mice and pre-tumor
and at sacrifice for HFD-fed mice. Young, chow-fed mice were
sacrificed at day 22 and HFD-fed mice were sacrificed at day 25
post-tumor challenge. Bioluminescent imaging (BLI) was used to
assess tumor burdens over time in live anesthetized mice or excised
lungs at sacrifice. BLI of the primary renal tumor was performed
by administering 1 mg of luciferin (GoldBio, St. Louis, MO,
USA)/mouse and imaging on the IVIS Lumina III Imager (Perkin
Elmer, Waltham, MA, USA) within the University of Alabama at
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Birmingham (UAB) Small Animal Imaging Facility. Primary renal
tumors were excised and weighed. Data were generated from n=2
independent experiments.

In vivo immune checkpoint blockade administration. Anti-mouse
cytotoxic T lymphocyte antigen-4 (CTLA-4) antibody (clone UC10-
4F10-11; BioXCell, Lebanon, NH, USA) was administered
intraperitoneally at a dose of 100 ug/mouse on days 10, 13, and 16
or 7, 10, 13, and 16 following tumor challenge where indicated.

Quantitative magnetic resonance (QMR) imaging. Mice were
transported to UAB’s Small Animal Phenotyping Subcore and
imaged by QMR to measure fat and lean mass.

Flow cytometry. Renal tumors were homogenized using a
gentleMACS dissociator (Miltenyi Biotec, Bergisch Gladbach,
North Rhine-Westphalia, Germany). Homogenized tissue was then
enzymatically digested with 5 pg/ml Liberase (Millipore Sigma, St.
Louis, MO, USA) and 37.5 pug/ml of DNase I (Millipore Sigma) at
37°C for 30 min in a shaking incubator, and then passed through a
70 um filter to yield single-cell suspensions. Cells were counted and
stained with Zombie Aqua Fixable Viability Dye (Biolegend, San
Diego, CA, USA) followed by TruStain FcX (Biolegend) to block
Fc receptors. Cells were then stained with saturating concentrations
of conjugated antibodies (Biolegend). Results were obtained from
multiparameter flow cytometry using an Attune NxT Flow
Cytometer (ThermoFisher Scientific, Waltham, MA, USA) and
analyzed with FlowJo software (BD Biosciences, San Jose, CA,
USA). The exclusion of doublets was accomplished by FSC-A/FSC-
W gating, and dead cells were excluded via Zombie Aqua Viability
Dye. Boundaries for positive events were objectively determined
using fluorescence minus one (FMO) controls.

Statistical analysis. All data were assessed for normality (Shapiro-
Wilk normality test) and equal variances, and either parametric or
nonparametric analyses were used to detect differences between
treatment groups. For studies involving two groups, unpaired
Student’s f-tests or nonparametric Mann-Whitney U-tests were
performed as appropriate. For three or more groups, one-way
ANOVA or nonparametric Kruskal-Wallis tests were performed as
appropriate. Pairwise comparisons between groups of interest using
Dunn’s post hoc tests were performed to correct for multiple
comparisons. For experiments examining repeated measures over
time between two or more groups, two-way ANOVAs were
performed with repeated measures or mixed models design as
necessary, followed by post hoc multiple comparison tests
(Bonferroni for two groups, Dunnett’s for more than two). All
statistical analyses were performed using Prism 8 (GraphPad
Software; La Jolla, CA, USA). All data are presented as the mean
plus or minus the standard error of the mean. Asterisks designate
significance using parametric testing (¥*p<0.05, **p<0.01,
*#%p<0.001); whereas, pound signs designate significance using
non-parametric testing (¥p<0.05, #p<0.01, #*p<0.001). Non-
significant trending p-values are indicated.

Results

TRF mitigates tumor-induced losses of lean and fat mass but
does not diminish renal tumor growth in young chow-fed
mice. To evaluate the effects of therapeutic TRF on renal
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Figure 1. Time-restricted feeding (TRF) does not alter primary renal tumor outgrowth, spontaneous lung metastases, or body weights in young,

chow-fed mice but does mitigate tumor-induced reductions in lean and fat

mass. (A) Experimental design for young, chow-fed mice. (B) Primary

tumor bioluminescence (BLI) over time (p=0.794), (C) excised renal tumor weights (p=0.662), and (D) spontaneous lung metastases (p=0.931).
(E) Body weight (p=0.523) over time. (F) Lean body mass for ad libitum (AL) (p=0.002) and TRF mice (p=0.095) and (G) fat mass for AL (p=0.002)

and TRF (p=0.310) mice pre-tumor versus day 21 post-tumor. Data from n

tumor outgrowth, young chow-fed BALB/c mice were
injected intra-renally with the murine renal tumor cell line
Renca, which has been engineered to express firefly
luciferase (Rena-luciferase). At day 6, mice were randomized
to an AL or TRF schedule (Figure 1A; n=5-6/group). No
differences between groups were observed for primary tumor
outgrowth over time determined by bioluminescence (BLI)
imaging (Figure 1B; two-way ANOVA, Group x Time,
F3.11y=0.34, p=0.794), excised renal tumor weights (Figure
1C; Mann-Whitney, p=0.662), or spontaneous lung
metastases (Figure 1D; Mann-Whitney, p=0.931). TRF had
no impact on body weight over time (Figure 1E; two-way
ANOVA, Group x Time, F(3 ;1,=0.63, p=0.523). In AL-fed
mice, lean body mass (Figure 1F) was significantly reduced
at day 21 post-tumor challenge versus pre-tumor challenge
(14% reduction; Mann-Whitney, p=0.002). TRF blunted the
loss of lean mass (11% reduction; Mann-Whitney, p=0.095).
Fat mass (Figure 1G) was also significantly reduced at day
21 post-tumor versus pre-tumor challenge in AL-fed mice
(58% reduction; Mann-Whitney, p=0.002). TRF also blunted

=2 independent experiments. " non-parametric test, p<0.010.

this tumor-induced reduction in fat mass (33% reduction;
Mann-Whitney, p=0.310). Thus, although TRF did not delay
renal tumor outgrowth in young chow-fed mice, it did
mitigate deleterious losses of lean and fat mass in these
animals.

TRF reduces primary renal tumor bioluminescence without
altering excised tumor weights or spontaneous lung
metastases in mice on HFD. To ascertain whether TRF had
more potent anti-cancer activity in older mice fed a high-fat
diet (HFD), BALB/c mice were challenged intra-renally with
Renca-luciferase cells after 20 weeks on the diet. At day 6,
mice were randomized to an AL or TRF schedule (Figure
2A; n=14-18/group). Primary tumor BLI over time was
significantly different between groups (Figure 2B; two-way
ANOVA, Group x Time; F(; 40,=10.76, p=0.002), with TRF
significantly reducing day 24 tumor BLI by 52%. No
differences between groups were observed in excised renal
tumor weights (Figure 2C; Mann-Whitney, p=0.382) or
spontaneous lung metastases (Figure 2D; Mann-Whitney,
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Figure 2. Time-restricted feeding (TRF) significantly reduces primary renal tumor bioluminescence but does not alter tumor weight at sacrifice in
high-fat diet-fed mice. (A) Experimental design for high-fat diet-fed mice. (B) Primary tumor bioluminescence (BLI) over time (p=0.002), (C) excised
renal tumor weights (p=0.382), and (D) spontaneous lung metastases (p=0.953). Data from n=2 independent experiments. *parametric test, p<0.050.

AL: Ad libitum.

p=0.953) at day 25 post-tumor challenge. Thus, TRF
appeared to reduce tumor cell viability, as evidenced by BLI
data, in older mice on HFD.

TRF reduces primary renal tumor bioluminescence in both
normal weight and overweight mice on HFD. BALB/c mice
on HFD show variable weight gain (24). To determine if
varying weight gain altered the response to TRF, after 20
weeks on HFD, mice were stratified by pre-tumor body
weight into normal weight (N-WT <27.1 g; mean=24.9 g)
or overweight (OVER-WT >27.1 g; mean=30.8 g)
categories (Figure 3A; Mann-Whitney, p<0.001). Primary
tumor BLI over time was significantly different between
groups (Figure 3B; n=7-10/group; two-way ANOVA, Group
x Time; F(3’11)=5.44, p=0.015), with TRF reducing tumor
BLI signals in both N-WT (66% reduction, p=0.003) and
OVER-WT (44% reduction, p=0.009) groups compared to
their respective AL controls. However, excised renal tumor
weights were not significantly different between TRF and
AL groups, within both N-WT and OVER-WT categories
(Figure 3C; Kruskal-Wallis, KW=2.81, p=0.422); post-hoc
analysis showed a non-significant but substantial decrease
(31% reduction) in N-WT+TRF compared to N-WT+AL.
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Spontaneous lung metastases were not significantly
different between groups (Figure 3D; Kruskal-Wallis,
KW=1.17, p=0.759), although N-WT+TRF displayed a
non-significant 59% reduction in lung BLI signal compared
to N-WT+AL. Thus, TRF appeared to reduce tumor cell
viability, as evidenced by BLI data, in both N-WT and
OVER-WT mice, and induced a non-significant reduction
in tumor weight in N-WT mice.

Tumor-infiltrating immune populations are not altered by
TRF in normal weight or overweight mice on HFD. To assess
the effects of TRF on immune responses, we analyzed tumor-
infiltrating leukocytes (CD45%) at day 25 in N-WT and
OVER-WT mice. TRF did not negatively alter the abundance
of any specific leukocyte population in N-WT or OVER-WT
mice; however, the presence of overweight significantly
reduced total viable leukocytes (CD45%) (Figure 4A; n=6-
10/group; Kruskal-Wallis, KW=14.40, p=0.002), with both
OVER-WT+AL and OVER-WT+TRF groups displaying
significant reductions compared to N-WT+AL mice. No
significant differences were observed in tumor-infiltrating
CD8* T cells (Figure 4B; Kruskal-Wallis, KW=1.80,
p=0.615) or CD44*CD8* activated T cells (Figure 4C;
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Figure 3. Time-restricted feeding (TRF) significantly reduces primary renal tumor bioluminescence in high-fat diet-fed normal weight and overweight
mice compared to ad libitum (AL) controls but does not alter excised renal tumor weights or spontaneous lung metastases. Experimental design
detailed in Figure 2A. (A) Pre-tumor challenge body weight (X=average body weight, p<0.001 for normal weight; N-WT <27.1 g versus overweight;
OVER-WT >27.1 g). (B) Primary tumor bioluminescence (BLI) over time (p=0.015), (C) excised renal tumor weights (p=0.422), and (D) spontaneous
lung metastases (p=0.759). Data from n=2 independent experiments. "*non-parametric test, p<0.001. 4significantly different from N-WT+AL.

bsignificantly different from OVER-WT+AL.

Kruskal-Wallis, KW=1.37, p=0.713). Total myeloid-derived
suppressor cells (MDSCs; CD11b*CD11¢ Ly6G*Ly6Cnt/+)
were significantly different between groups (Figure 4D; one-
way ANOVA, F3 57)=4.25, p=0.014), with OVER-WT+AL
displaying significant reductions compared to N-WT+AL
mice (50% reduction, p=0.023). However, no significant
differences were observed in the CD44+*CD8™ activated T cell
to total MDSC ratio (Figure 4E; Kruskal-Wallis, KW=4.57,
p=0.207). Thus, TRF did not impair the abundance of tumor-
infiltrating anti-tumor immune populations or greatly the ratio
of CD44*CD8" activated T cells to MDSCs.

TRF does not enhance anti-CTLA-4 efficacy in young, chow-
fed mice with anti-CTLA-4 resistant renal tumors. Because
prior studies have demonstrated the efficacy of intermittent
fasting or calorie restriction for improving chemotherapy
outcomes, we examined whether TRF could improve

responses to anti-CTLA-4 in young mice with renal tumors.
Young chow-fed BALB/c mice were tumor-challenged,
randomized to AL or TRF at day 6, and then further
randomized to receive no therapy (NT) or anti-CTLA-4 at
days 10, 13, and 16 post-tumor challenge (Figure 5A; n=5-
8/group). Under AL conditions, Renca tumors were resistant
to anti-CTLA-4 monotherapy, a finding that is consistent
with data from previously published studies examining anti-
CTLA-4 monotherapy in mice injected subcutaneously with
Renca cells (25). No differences between groups were
observed in primary tumor BLI over time (Figure 5B; two-
way ANOVA, Group x Time, F(9’43)=0.15, p=0.998), tumor
weight (Figure 5C; Kruskal-Wallis, KW=0.31, p=0.958), or
spontaneous lung metastases (Figure 5D; Kruskal-Wallis,
KW=0.26, p=0.968). Thus, TRF did not improve anti-
CTLA-4 efficacy in young, chow-fed mice with anti-CTLA-
4 resistant renal tumors.
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Figure 4. Time-restricted feeding (TRF) does not alter tumor-infiltrating immune populations in high-fat diet-fed normal weight (N-WT) or overweight
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TRF impedes some of the anti-cancer effects of anti-CTLA-4
in HFD-fed overweight mice with anti-CTLA-4 sensitive renal
tumors. We then investigated whether TRF would improve
anti-CTLA-4 outcomes in HFD-fed older mice with renal
tumors that are sensitive to anti-CTLA-4 monotherapy.
BALB/c mice were placed on HFD for 20 weeks to generate
N-WT and OVER-WT mice. All mice were tumor-
challenged, randomized to AL or TRF, and then further
randomized to receive no therapy (NT) or anti-CTLA-4 (n=6-
10/group) at days 7, 10, 13, and 16 post-tumor challenge
(Figure 6A; n=6-10/group). For the N-WT cohort, primary
tumor BLI over time was significantly different between N-
WT groups (Figure 6B; two-way ANOVA, Group x Time;
F(3’15)=3.82, p=0.033), with TRF+NT alone (66% reduction,
p=0.001) and TRF+anti-CTLA-4 (54% reduction, p=0.011)
groups significantly reducing BLI signals compared to
AL4NT mice. Tumor weight was not significantly different
between groups (Figure 6C; one-way ANOVA, F 3 »5=0.50,
p=0.685); however, tumor reductions were observed in
TRF+NT (31% reduction, p=0.339) and TRF+anti-CTLA-4
(24% reduction, p=0.454) compared to AL+NT N-WT mice.
Spontaneous lung metastases were not significantly different
between N-WT groups (Figure 6D; Kruskal-Wallis,
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KW=0.57 p=0.904); however, lung BLI reductions were
observed in AL+anti-CTLA-4 (80% reduction, p=0.116),
TRF+NT (59% reduction, p=0.938), and TRF+anti-CTLA-4
(62% reduction, p=0.817) mice compared to AL+NT N-WT
mice. For the OVER-WT cohort, primary tumor BLI over
time was significantly different between OVER-WT groups
(Figure 6E; two-way ANOVA, Group x Time; F(3,13)=4.35,
p=0.025) with AL+anti-CTLA-4 (53% reduction, p=0.001),
TRF+NT alone (44% reduction, p=0.007), and TRF+anti-
CTLA-4 (56% reduction, p=0.001) groups having reduced
renal tumor BLI signals compared to AL+NT OVER-WT
mice. Tumor weights were not significantly different
between groups (Figure 6F; Kruskal-Wallis, KW=7.75,
p=0.052); however, post-hoc analysis showed a significant
reduction in AL+anti-CTLA-4 (31% reduction, p=0.048)
compared to AL+NT OVER-WT mice. Spontaneous lung
metastases were not significantly different between OVER-
WT groups (Figure 6G; Kruskal-Wallis, KW=5.89 p=0.117);
however, a trending reduction in lung BLI signal was
observed in AL+anti-CTLA-4 (64% reduction; p=0.077)
compared to AL+NT OVER-WT mice. Thus, TRF impedes
some of the anti-cancer effects of anti-CTLA-4 in mice with
anti-CTLA-4 sensitive renal tumors.
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Figure 5. Time-restricted feeding (TRF) does not enhance anti-CTLA-4 efficacy in young, chow-fed mice. (A) Experimental design for young, chow-
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Discussion

Here, we examined the effects of therapeutic time-restricted
feeding (TRF) alone or in combination with anti-CTLA-4
checkpoint blockade in both normal-weight versus
overweight and young versus old mice with orthotopic renal
tumors. In young, chow-fed mice, TRF did not diminish
primary tumor bioluminescence (BLI) over time, excised
renal tumor weights, or spontaneous lung metastases.
However, TRF mitigated cancer-induced cachexia. In older
high-fat diet (HFD)-fed mice, TRF significantly reduced
primary tumor BLI signals but did not decrease tumor
weights or spontaneous lung metastases compared to AL-fed
mice. Upon stratifying mice by pre-tumor challenge body
weight, we found that TRF significantly reduced primary
tumor BLI signal in both normal weight (N-WT) and
overweight (OVER-WT) mice compared to AL counterparts
and induced a trending reduction in tumor weights and

spontaneous lung metastases in N-WT mice. Young, chow-
fed mice with renal tumors were highly resistant to anti-
CTLA-4 monotherapy, and in this murine model, TRF did
not alter anti-CTLA-4 efficacy. HFD-fed N-WT mice were
also resistant to anti-CTLA-4 monotherapy; however, TRF
induced non-significant reductions in tumor weight and
spontaneous lung metastases. In contrast, anti-CTLA-4
monotherapy significantly reduced primary tumor BLI
signals and tumor weights, and induced a trending reduction
in spontaneous lung metastasis in OVER-WT+AL mice,
illustrating enhanced sensitivity to this therapy. Of concern,
in these therapy-sensitive mice, TRF negated the beneficial
effects of anti-CTLA-4 therapy and renal tumors grew
unchecked (i.e., tumor weights from AL+anti-CTLA-4 (0.92
g) were significantly reduced (p=0.015) compared to
TRF+anti-CTLA-4 (1.97 g). Thus, our results demonstrate
that TRF can produce context-dependent, divergent effects
on renal tumor growth, with outcomes influenced by a
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Figure 6. Anti-CTLA-4 significantly reduces excised tumor weights in ad libitum (AL)-fed, overweight mice but efficacy is not improved by time-
restricted feeding (TRF) in high-fat diet-fed normal weight or overweight mice. (A) Experimental design for high-fat diet-fed mice. For the N-
WT cohort, (B) primary tumor bioluminescence (BLI) over time (p=0.033), (C) excised renal tumor weights (p=0.685), and (D) spontaneous
lung metastases (p=0.904). For the OVER-WT cohort, (E) primary tumor BLI over time (p=0.025), (F) excised renal tumor weights (p=0.052),
and (G) spontaneous lung metastases (p=0.117). Data from n=2 independent experiments. *non-parametric test, p<0.050. 4significantly different
from AL+NT.
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variety of factors including animal age, diet composition,
body weight, and therapy administration. Additional studies
are needed before this approach is translated into use in
cancer patients, particularly those with renal cancer receiving
immune checkpoint blockade.

Chronic calorie restriction reduces tumor growth and
enhance anti-tumor immunity in both chow-fed and HFD-fed
mice (26, 27). However, chronic calorie restriction in humans
is difficult to maintain, and when implemented in murine
models, it often results in prolonged periods of fasting,
followed by immediate consumption once the daily allotment
of food is made available (28, 29). Alternatives to chronic
calorie restriction include intermittent fasting strategies, such
as short-term fasting, fasting-mimicking diets, and TRF (2,
3). Data from several studies demonstrate that intermittent
fasting strategies in both chow-fed and HFD-fed mice can
also reduce tumor incidence and growth rates in
spontaneously-arising tumor models and can delay tumor
growth in transplanted models (8, 20, 26, 27, 30-32).
Notably, the majority of these studies administered the dietary
strategy prophylactically or used a severe 48-h short-term
starvation within the therapeutic window; whereas, in our
experiments, TRF was implemented post-tumor challenge.

Tumor progression in the orthotopic Renca model is
accompanied by tumor-induced weight loss (Figure 1E).
Importantly, TRF did not exacerbate this weight loss in chow-
fed or HFD-fed mice. In fact, TRF blunted the tumor-induced
weight loss in young, chow-fed mice, preserving both lean
and fat mass. This finding is encouraging because it contrasts
with prior studies on the use of a short-term 48-h fast in mice
with 4T1 tumors, which resulted in a loss of nearly 20% of
animal body weight (6). In humans, cancer-associated
cachexia is associated with poor overall quality of life,
reduced response to cancer therapy, and increased risk of
death (33). Pharmacological strategies are attempting to
combat cancer-associated cachexia (34), and our data suggest
that TRF may be a complementary avenue worth pursuing as
a means of preserving lean mass in cancer patients. However,
more research is needed to determine if TRF can be safely
used to preserve lean and fat mass in cancer patients.

Feeding mice a HFD AL can increase tumor progression
by directly promoting tumor growth and by indirectly
shifting the immune response from anticancer to pro-cancer
(35-39). A caveat to data generated in many HFD-feeding
studies is that it is difficult to decipher between the effects
of varying diet composition versus HFD-induced obesity
when reference groups are typically chow-fed, lean controls
(15). BALB/c mice represent a mouse strain more resistant
to developing diet-induced obesity (40, 41), and we have
leveraged this phenomenon to match energy intake and diet
composition while comparing outcomes of interest in cohorts
of normal weight versus overweight mice (42). Here, using
HFD-fed BALB/c mice, we were able to broadly assess AL

versus TRF in HFD-fed mice of varying body weights. TRF
significantly reduced primary tumor BLI signals in both N-
WT and OVER-WT compared to AL-fed mice. TRF could
be reducing nutrient availability to the tumors, reducing the
concentration of circulating growth factors (e.g., Insulin-like
growth-factor-1), or inducing cell stress and autophagy (43),
thereby reducing viable tumor cells as measured by primary
tumor BLI signal. It is possible that this beneficial reduction
in primary tumor BLI signals may have failed to translate
into a reduction in primary tumor weights because of the
short intervention window and aggressiveness of the Renca
tumor model. Notably, TRF did induce a non-significant but
potentially clinically meaningful decrease in spontaneous
lung metastasis in HFD-fed mice, a finding that warrants
additional research since the majority of cancer deaths are
attributable to metastatic disease (44, 45).

The efficacy of many cancer therapies — including
chemotherapy, radiotherapy, targeted therapy, and
immunotherapy — are mediated in part by functional anti-
tumor immune responses or the ability to reinvigorate a
functional anti-tumor immune response (46). Interventions
that reduce dietary intake have the potential to directly
inhibit tumor cell proliferation by reducing nutrient
availability, like glucose, to tumor cells (2, 47). However,
anti-tumor immune cells, including effector CD8" T cells,
also rely on glucose to clonally expand and support effector
mechanisms like cytolytic activity and cytokine secretion
(48). Data from previous studies suggest that fasting-
mimicking diets and intermittent fasting strategies can
actually increase the abundance of effector CD8* T cells,
resulting in enhanced outcomes using anthracycline-based
chemotherapy (5, 6). Therefore, we characterized both anti-
and pro-tumor immune compartments in treatment naive AL
and TRF cohorts to determine whether TRF was blunting
protective immune populations. OVER-WT+AL mice
displayed a reduction in CD45" tumor-infiltrating leukocytes
compared to N-WT+AL mice. TRF induced a trending
increase in the percentage of CD45"% leukocytes in OVER-
WT mice. However, the percentages of CD8" T cells and
activated (CD44%) CD8* T cells were similar within N-WT
and OVER-WT groups regardless of feeding strategy.
Although OVER-WT+AL mice displayed a reduction in
myeloid-derived suppressor cells (MDSC); this failed to
translate into an improved activated CD8* T cell to MDSC
ratio (Figure 4G). Thus, in contrast to prior reports on
fasting-based dietary interventions, we found that therapeutic
TRF did not significantly improve the T cell response to
tumors.

In the current study, differential responses to anti-CTLA-4
were observed in N-WT and OVER-WT cohorts. Anti-CTLA-
4 monotherapy significantly reduced primary tumor BLI
signals and tumor weights, and induced a trending reduction in
spontaneous lung metastasis in OVER-WT+AL but not N-
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WT+AL mice. This finding mirrors data from a preclinical
study where elevated adiposity and increased leptin correlated
with enhanced outcomes following anti-PD-1 immune
checkpoint blockade in mice with subcutaneous B16-FO
melanoma  tumors  (49). Obesity-induced  systemic
inflammation could increase immune aging and upregulate
inhibitory checkpoint pathways in effector CD8 T cells,
providing the necessary targets for immune checkpoint
blockade to promote and/or reinvigorate an anti-tumor immune
response. The impact of increased adiposity and immuno-
therapeutic efficacy is being explored clinically (49-52);
however, additional research is needed to investigate the effects
of obesity-induced dysregulation on anti-tumor immune
mechanisms  across  multiple tumor models and
immunotherapeutic strategies to determine if there is a context
in which this dysregulation is beneficial to therapeutic efficacy.

The current study contains several limitations. In young,
chow-fed mice, TRF alone or in combination with anti-CTLA-
4 did not diminish primary tumor BLI over time, tumor weight
at sacrifice, or spontaneous lung metastases. Young, chow-fed
mice represent a phenotype characterized by low systemic
inflammatory and metabolic dysregulation and therefore may
offer minimal targets by which TRF can mediate beneficial
changes. Additionally, Renca cells injected orthotopically
represents a rapid and aggressive tumor model. The limited
time period in which TRF was administered in our current
study to both young, chow-fed and older, HFD-fed mice may
have been insufficient to normalize over-eating-induced
perturbations in inflammatory and metabolic mediators. Also,
two-fold improvements were observed for multiple
experimental endpoints, yet due to limited statistical power and
inter-animal variability, these findings failed to reach statistical
significance and would likely benefit from increasing sample
numbers per groups. Future studies are needed to investigate
both a prophylactic TRF administration in Renca tumor-
bearing animals, and TRF initiated post-tumor resection to
investigate additional applications of this intervention strategy.

Overall, our current study suggests that TRF alone has
modest anti-cancer effects that vary by the experimental
conditions. Our study is also the first to test whether TRF
can act in combination with immune checkpoint blockade to
reduce tumor growth, with our current data suggesting that
it does not improve the efficacy of anti-CTLA-4
monotherapy in aggressive renal cancer. It is imperative to
understand the interactions between overnutrition and
immune responses alone and following immunotherapy
administration, as well as to determine whether novel
strategies, like TRF, can reverse the negative effects of
overnutrition to impair tumor growth and/or enhance
immunotherapy responses. Identifying molecular and cellular
mediators that link overnutrition and the immune response
to tumors, with or without immunotherapy administration,
and then determining if TRF can alter these mediators to
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improve outcomes Wwill provide a strong rationale for
translating positive findings into clinical applications.
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