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Abstract. Melanoma is one of the most lethal types of skin
cancer, with a poor prognosis once the disease enters metastasis.
The efficacy of currently available treatment schemes for
advanced melanomas is low, expensive, and burdened by
significant side-effects. Therefore, there is a need to develop new
treatment options. Skin cells are able to activate vitamin D via
classical and non-classical pathways. Vitamin D derivatives have
anticancer properties which promote differentiation and inhibit
proliferation. The role of systemic vitamin D in patients with
melanoma is unclear as epidemiological studies are not
definitive. In contrast, experimental data have clearly shown that
vitamin D and its derivatives have anti-melanoma properties.
Furthermore, molecular and clinicopathological studies have
demonstrated a correlation between defects in vitamin D
signaling and progression of melanoma and disease outcome.
Therefore, adequate vitamin D signaling can play a role in the
treatment of melanoma. 

Skin cells are able to activate vitamin D via classical and non-
classical metabolic pathways (1-9). Vitamin D derivatives

have anticancer properties and promote differentiation and
inhibit proliferation of various cells, including melanoma, the
most aggressive and lethal type of skin cancer. In this review,
we provide an overview on the endogenous synthesis and
activation of vitamin D via classical and non-classical
pathways. We also present the association of vitamin D and
melanoma based on epidemiological, experimental and clinical
evidence, showing that defects in vitamin D signaling
correlate with progression of melanoma and disease outcome.
Therefore, restoration of the adequate vitamin D signaling can
play a role in melanoma therapy. 

Introduction to the Ultraviolet B (UVB) 
in Skin Biology: A Two-edged Sword
Cutaneous synthesis and activation of vitamin D. The main
natural source of vitamin D in the body is its cutaneous
synthesis. Vitamin D3 formation in the skin requires exposure
to ultraviolet B radiation (UVB, λ=290-320 nm) leading to
photolysis of 7-dehydrocholesterol, to form previtamin D3
(precholecalciferol), which is then isomerized to vitamin D3
(cholecalciferol), or phototransformed to tachysterol and
lumisterol depending on the UVB dose (1-9). Subsequently,
vitamin D3 is released from keratinocyte membranes to the
extracellular space. Vitamin D3 enters the circulating system
bound to vitamin D3-binding protein (4) (Figure 1). The serum
level of hydroxyvitamin D3 is regulated via a negative
feedback mechanism. Inactivation of both 25(OH)D3 and
1,25(OH)2D3 is catalyzed by cytochrome P450 family 24
subfamily A member 1 (CYP24A1) via hydroxylation (9-13). 

Vitamin D3 activation requires a two-step hydroxylation in
the canonical pathway (Figure 1). The first step includes C25
hydroxylation catalyzed by cytochrome P450 family 2
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subfamily R member 1 (CYP2R1) and/or cytochrome P450
family 27 subfamily B member 1 (CYP27A1), generating 25-
hydroxyvitamin D [calcidiol; 25(OH)D3]. The second
hydroxylation is mediated by cytochrome P450 family 27
subfamily B member 1 (CYP27B1), which generates calcitriol
[1,25(OH)2D3], the biologically active form of vitamin D. The
systemic levels of active forms of vitamin D3 are regulated by
hydroxylation in the liver and kidneys (9, 14-18). In addition,
the above vitamin D3 activation pathways operate in other
tissues including the skin (9, 10, 19-28).

In the non-canonical pathway, vitamin D3 is activated by
the action of steroidogenic enzyme CYP11A1 with initial
production 20(OH)D3 and 22(OH)2D3, and  further
hydroxylation of the side chain by the same enzyme (Figure
1) (9, 29, 30). CYP11A1-derived metabolites can be
hydroxylated by CYP3A4, CYP27A1, CYP24A1 and
importantly by CYP27B1 producing variety of vitamin D
hydroxy-derivatives (9, 30, 31). These pathways operate in
vivo (32, 33), including in the skin, since CYP11A1 is
expressed in skin cells (34). In addition, 7-dehydrocholesterol
(7DHC) can be metabolized by CYP11A1 to produce
22(OH)7DHC and 20,22(OH)27DHC, and finally 7-
dehydropregnenolone after cleavage of the side chain (35, 36).
After exposure to UVB, these compounds can be transformed
to corresponding vitamin D derivatives (37, 38).

UV and development of melanoma and skin cancer. UVR
reaching the Earth’s surface is comprised 95% by UVA
(λ=320-400 nm) and 5% by UVB (λ=280-320 nm) (39-43).
UVB is highly mutagenic, generating mostly 6-4
photoproducts and pyrimidine or cyclobutane dimers, while
UVA is less carcinogenic and modifies DNA mostly via
oxidation of guanine and by generating 8-hydroxyguanine
[reviewed in (39, 40, 44)].

Both artificial and natural UVR are a major risk factors for
non-melanoma skin cancer, such as basal cell (BCC) and
squamous cell (SCC) carcinomas, as well as melanomas.
Intense UV exposure during childhood or adolescence is a
risk factor for BCC (45, 46). UVB is much more efficient in
inducing SCC than is UVA (47, 48). The UV spectrum
involved in BCC pathogenesis is under the discussion (49-
52). UVR is the major risk factor for cutaneous melanoma
and acts as a full carcinogen (initiator and promoter) (48, 51-
54). There are several other factors affecting
melanomagenesis such as viruses, chronic inflammation and
persistent stress, as melanomas can develop on sun-protected
areas such as mucosa, acral skin and other anatomical sites
(55, 56). Intermittent sun exposure  and  sunburn during
childhood and adolescence increase the risk of melanoma,
especially in fair-skinned people with blond or red hair and
multiple nevi (53, 57). Individuals with genetically
conditioned disease, such as xeroderma pigmentosum, related
to mutations in XP (58) genes, encoding proteins crucial for

nucleotide excision repair whereby they are unable to repair
UV-induced DNA damage, are more susceptible to both
melanoma (more than 2,000-fold increased risk in
comparison to the general population) and non-melanoma
skin cancer (more than a 10,000-fold increased incidence in
comparison to the general population) (59). Artificial sources
of UV such as solar lamps, tanning beds and UV-based
therapies have been reported to be linked to melanoma
development (48, 60-67). It is unclear whether UVB or UVA
plays a major role in melanomagenesis (58, 68-71).

The mechanism involved in UV-induced carcinogenesis is
complex and is related to such processes as
immunosuppression, induction of mutations in a broad range
of genes, stimulation of growth via altered expression of
growth factors, cytokines, neuropetides and their receptors,
and which can affect keratinocytes and melanocytes, and
promote melanocyte-fibroblast interactions, and modify
cadherins, integrins, melanoma inhibitory activity and
expression of other genes (Figure 1) (39, 54, 72-83).
Although UV fingerprint mutations have been identified in
genes p53 and cyclin-dependent kinase inhibitor 2A
(CDKN2A) in BCC and SCC, the role of p53 in
melanomagenesis is not defined [reviewed in (84)]. 

Melanoma

Epidemiology of cutaneous melanoma. Cutaneous melanoma
is the most common melanoma subtype, with an increasing
(4-6%) annual incidence rate, mainly in older, fair-skinned
populations of Australia, New Zealand, Northern Europe and
North America (53, 85-87). At the same time, a stabilization
in the cutaneous incidence rate in younger populations
(except USA) has been observed (85). In countries with a
high incidence rate, such as Australia, New Zeeland and
North America, a preponderance of melanomas among men
is observed. On the other hand, an increasing incidence rate
has been found in younger (<40 years) female population,
especially in the US, while men have a higher incidence rate
at an older age (>40 years) (85). 

Surgical removal of melanoma is limited to localized
disease (stage I and II) and chemotherapy for melanoma has
a low response rate. Therefore, there is a need to develop
new treatment modalities (81, 88-91). The use of molecular-
targeted drugs and immune therapies is limited, due to high
cost, side-effects and relatively unsatisfactory responses (85).
A promising treatment option appears to be anti-
programmed death receptor 1 (PD1) therapy (92). Vitamin D
represents a new, promising agent, both as chemopreventive
and therapeutic agent.

Epidemiology of uveal melanoma. Uveal melanoma is the
most frequent primary intraocular cancer, developing mostly
within the choroid (85-90%), ciliary body (5-8%) and iris (3-
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5%) (93). It is the second most common melanoma subtype
(93-95). Uveal melanoma affects mostly the Caucasian
population and people over 50 years of age (93-95). Over the
past 40 years, the incidence rate has been stable, with slight,
but significant increase of incidence for Caucasians (96).
Similarly to cutaneous melanoma, the incidence rate in
Europe increases with latitude, and in the USA a higher
incidence rate was observed in California (94). There is
slightly higher incidence rate among men (94, 96). The
therapeutic options for uveal melanoma include surgery,
enucleation, radiation, or combination treatment (94, 96).
The 5-year survival rate (about 75-80%) has been stable for
the past 40 years (94, 96). The efficacy of immunotherapy
against uveal melanoma is limited and molecular-targeted
therapies are still being investigated (93). Thus, similarly to
cutaneous melanomas, vitamin D-based treatment might
serve as novel, adjuvant antitumor therapy (97).

Risk factors for melanomas. The most important
environmental risk factor for cutaneous melanoma is natural
and artificial UV radiation. The involvement of UV in

melanoma development is, in part, related to genetic factors,
such as germline mutations, pigmentation, UV-induced
mutations or inability to repair UV-induced DNA damages.
Most melanoma cases are sporadic, but 5-12% of all
melanomas have family history of melanoma (44). Patients
with multiple nevi are also prone to developing melanoma
(98). About 20% of patients with susceptibility to melanoma
are carriers of a CDKN2A (called also INK4a/ARF) gene
mutation, coding two structurally distinct proteins, p14ARF and
p16INK4a, involved in cell-cycle regulation (99). Mutations in
the cyclin-dependent kinase-4 (CDK4) gene confer
susceptibility to cutaneous melanoma, but mutations in CDK4
are not as frequent as those in CDKN2A (100, 101). In
addition, germline mutations in the tumor-suppressor BRCA-
associated protein-1 (BAP1) gene, ubiquitin C-terminal
hydrolase, encoding the protein interacting with BRCA1, have
been identified in fewer than 1% of cutaneous melanomas.
Melanocortin 1 receptor (MC1R) mutations increase
susceptibility to melanoma in general population (102). 

Atypical cutaneous nevi, light eye color fair skin color,
predisposition to sunburn ocular melanocytosis and iris nevi
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Figure 1. Schematic of vitamin D synthesis, activation and attendant effects on melanoma biology. 7DHC: 7-Dehydrocholesterol; CYP2R1:
cytochrome P450 family 2 subfamily R member 1; CYP27A1: cytochrome P450 family 27 subfamily A member 1; CYP27B1: cytochrome P450
family 27 subfamily B member 1; D3: vitamin D3; INFg: interferon gamma; L3: lumisterol 3; pre-D3: pre-vitamin D3; ROS: reactive oxygen
species; T3: tachysterol 3; Th1: T-helper cell type 1 phenotype; Th2: T-helper cell type 2 phenotype.



are risk factors for uveal and cutaneous melanoma (103).
Chronic exposure to sunlight were not related to the risk of
uveal melanoma development, but welding was identified as
a risk factor (103). The majority of uveal melanomas are
sporadic tumors. However recently mutations in BAP1 were
found to be related to younger age (39-50 years) at
diagnosis, and higher risk of second tumors (cutaneous
melanoma, renal cell carcinoma) has been identified (104). 

Classical and Non-classical Vitamin D Derivatives
The main active form of vitamin D, 1,25(OH)2D3 (calcitriol)
acts predominantly through binding to the nuclear vitamin D
receptor (VDR). VDR is activated by 1,25(OH)2D3 to form a
dimer with the retinoid X receptor (RXR) receptor, is
translocated to the cell nucleus, and acts as a transcription
factor via binding to VDR-responding element (VDRE) (10,
105-108). More than 1,000 target genes, varying broadly in
their biological activities, regulated by vitamin D were
identified depending on cell type (109-112). VDR expression
was identified in many tissues and cells, including epidermal
and dermal skin cells that both synthesize 1,25(OH)2D3
(calcitriol) and respond to it (10, 107, 113-115). Non-
canonical, noncalcemic hydroxylated vitamin D3 forms (9, 30,
33) can also act on VDR (116-119). They can also act as
inverse agonists on retinoic acid-related orphan receptors
(RORs) α and γ (117, 120), which are expressed in normal
and pathological skin cells, including melanoma (120, 121).
Most recently, it has been shown that vitamin D3 hydroxy-
derivatives can act on arylhydrocarbone receptor (122). These
alternative receptors for vitamin D3 and its metabolites may
be related to the diverse actions of vitamin D.

Vitamin D and Melanoma: 
Experimental and Clinical Evidence

Anticancer properties of vitamin D – An overview. Almost 40
years ago the anticancer effects of vitamin D was suggested
by Garland and Garland (123) based on epidemiological
studies and Colston et al. observed the anticancer effects of
vitamin D experimentally (124). Several molecular pathways
related to cancer biology, tumor development and progression
have been proposed to serve as targets for active forms of
vitamin D (52, 77, 125-130). Vitamin D and its derivatives
have been shown to inhibit cancer-cell proliferation. p21
regulates the cell cycle by calcitriol and VDR (131-135).
Vitamin D also up-regulates the cell cycle inhibitor, p27 (135-
138). Vitamin D-related mechanisms regulating the cell cycle
may be related to the growth factor signaling [reviewed in
(108, 139)], including up-regulation of insulin-like growth
factor-binding protein 3 (IGFBP3) and transforming growth
factor-β (TGFβ) expression and signaling pathways (140-
144), downregulation of hedgehog signaling (145-147). Cell-

cycle inhibition in cancer can be accompanied by apoptosis,
which is also promoted by vitamin D. This is achieved by
down-regulation of phosphorylated AKT and ERK, leading
to apoptosis through activation of forkhead box O 3A
(FOXO3) (148), down-regulation of B-cell lymphoma 2
(BCL2) and up-regulation of BCL2-associated X protein
(BAX), BCL2 antagonist/killer 1 (BAK), and BCL2-
associated agonist of cell death BAD (149) [reviewed in (108,
150)]. Calcitriol induces the expression of adhesion
molecules, stimulates cell maturation, and inhibits cancer
progression and metastatic potential (135, 151-153). Vitamin
D inhibits metastasis via the inhibition of vascular endothelial
growth factor expression (VEGF) (154, 155). 

Vitamin D can prevent cancer by protecting DNA (108,
156-158) as well as inducing the expression of superoxide
dismutase, glucose-6-phosphate dehydrogenase, nuclear
factor erythroid 2 (NF-E2)-related factor 2, proliferating cell
nuclear antigen (PCNA) , BRCA1 and other genes (159-162).

Vitamin D can modulate immune responses by stimulating
the innate immune response, while inhibiting the adaptive
immunity response. Vitamin D attenuates chronic
inflammation related to increased cancer risk [reviewed in
(163, 164)]. Vitamin D modulates the inflammatory immune
response by up-regulation of PD-1, as was observed in
Crohn’s disease (165) and induces the expression of
programmed death-ligand 1 (PD-L1) and PD-L2 via VDR in
experimental cell-based models (166). Immune response
regulation by vitamin D is linked to the inhibition of type 1
T-helper (Th1) and promotion of Th2 phenotype, including
up-regulation of interleukin 10 (IL10) and TGFβ (167, 168).
The role of vitamin D in the immune response in patients
with cancer appears complex (169).

1,25(OH)2D3 has antitumor properties affecting molecular
pathways involved in proliferation, apoptosis  and
differentiation, but can also improve effectiveness of classical
anticancer therapies (163, 170). Experimental cell- and animal
model-based data clearly showed that vitamin D and its analogs
increased the effectiveness of well-known cancer chemotherapy
drugs (such as doxorubicin, cisplatinum, gemcitabine and
cyclophosphamide) (171-173). 1,25(OH)2D3 sensitized
malignant cells to ionizing radiation (174-179) and proton beam
radiation (180). These data indicate that vitamin D and its
analogs alone or in combination with standard therapeutic
schemes can improve the outcome of melanoma therapy.

Effects of vitamin D on melanoma cells in vitro. Since anti-
melanoma properties of vitamin D and its analogs were
reviewed recently (38, 130), what follows is only a short
overview. Colston and co-workers showed VDR-expressing
melanoma cells were inhibited by 1,25(OH)2D3 (124). The
anticancer properties of 1,25(OH)2D3 have been shown in
various melanoma cell lines. Janjetovic et al. reported the
inhibitory effects of 1,25(OH)2D3 on both pigmented and
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nonpigmented SkMel-188 melanoma cells (181). A similar
effect was found for 20(OH)D3. Both compounds stimulated
VDR translocation into the nucleus, and in nonpigmented
melanoma cells inhibited nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-ĸB) DNA targeting by
vitamin D3. Melanin affected melanoma cell susceptibility to
vitamin D3 anticancer activity (181). 1,25(OH)2D3 also
inhibited colony formation by SkMel-188 cells (182, 183).
The antiproliferative activity of 1,25(OH)2D3, calcipotriol and
25(OH)D3 are related to the expression VDR and CYP27B1
(184). The growth inhibition and apoptosis inducing effects of
1,25(OH)2D3 were also observed in other human melanoma
cell lines, including: A375 (185), ME18 (186), MeWo (187-
190), RPMI 7951 (191, 192), SM (189), SK Mel 28 (189,
192-194) and WM1341 (187, 188). The anticancer activity of
calcitriol was also demonstrated against mouse B16 and
hamster Bomirski melanoma cells (195). Vitamin D3 inhibited
invasiveness of malignant cells. Yudoh and co-workers
reported inhibition of lysis of IV type collagen and stimulation
of basement membrane reconstitution by B16 mouse
melanoma cells preincubated with calcitriol for 48 h (196). 

Other forms of vitamin D are biologically active and are
potential anticancer agents. Vitamin D metabolites
1,24,25(OH)3D3 and 1,25,26(OH)3D3 inhibited the
proliferation of the MM96 cell line, similarly to that found
for 1,25(OH)2D3 (197). It was shown that malignant cells,
including pigmented melanoma cells, possess an active
mechanism of metabolizing of vitamin D (198-200). In
addition, several vitamin D derivatives have been developed
and identified as non-calcemic or low-calcemic anticancer
agents. 20(OH)D2/3, a non-calcemic vitamin D derivative,
inhibited melanoma cells both in vitro and in vivo (119, 181,
183, 201-203). 20,23(OH)2D3, and 1,20(OH)2D3 also
inhibited proliferation and colony formation of melanoma
cells (183). Metabolites of 20(OH)D3 such as 20,24(OH)2D3
and 20,25(OH)2D3, produced by the action of CYP24A1,
inhibited melanoma growth in soft agar more efficiently than
1,25(OH)2D3 and 20(OH)D3 (31). A very recent report
showed anti-melanoma activity of 21(OH)pD in WM98,
A375 and SK-MEL-188b (VDR−/−CYP27B1−/−) lines. Only
WM98 and A375 cells were sensitive to calcipotriol (184). 

Effects of vitamin D and its new analogs on melanoma cells
in animal models. The antitumorigenic activity of
1,25(OH)2D3 in an animal model was reported for the first
time by Eisman and coworkers (204), demonstrating the
inhibition by 1,25(OH)2D3 of the growth of human
melanoma cells COLO 239F expressing VDR, which were
injected into immunosuppressed mice. Another melanoma
cell line, RPMI 7932, with no VDR expression, was
insensitive. The VDR-positive SKMel-188 melanoma cell
line, injected into immunocompromised mice, was inhibited
by 20(OH)D3 (201). 1,25(OH)2D3 reduced lung metastasis

of B16 melanoma cells injected into mouse by affecting the
extracellular matrix (196), and 1(OH)D2 reduced tumor
growth in Tyr-Tag transgenic mice, which develop
pigmented ocular tumors, similar to human choroidal
melanoma (205). The patient-derived orthotopic xenograph
(PDOX) model has been developed for melanoma in order
to individualize chemotherapy for individual patients with
advanced melanoma. For example, effective therapy was
identified for melanoma with/without BRAF-V600 mutation
(206-212). 

Serum vitamin D level in patients with melanoma: Effects on
susceptibility and survival. Garland and Garland (123)
suggested that low-sun-exposure-related vitamin D
insufficiency was correlated with higher colon cancer
mortality rates. These results were confirmed by other
epidemiological reports (213-215) and experiments in animal
models treated with vitamin D, showing inhibition of tumor
growth (216, 217) and higher benign and malignant tumor
risk in VDR−/− animals (22, 27, 218, 219). 

A recent case–control study showed higher vitamin D levels
in serum of healthy controls than in patients at the time of
melanoma diagnosis. A multivariate model revealed a negative
association between vitamin D sufficiency and melanoma
(220). These data confirmed previously published reports on
the correlation of serum vitamin D levels and clinical outcome
of patients with melanoma, including a relationship between
the lower Breslow tumor thickness and higher 25(OH)D3 level
(221). Subsequent studies confirmed that a lower vitamin D
level was related to greater progression of melanoma [Breslow
thickness, Clark level, the American Joint Committee on
Cancer (AJCC) stage], the presence of poor prognostic
markers (ulceration, higher mitotic index), shorter overall
survival and increased risk for melanoma-specific death (222-
226). However, some investigators (227) did not observe such
relationships and found only longer disease-free survival for
patients with higher vitamin D levels. Melanoma risk is
related to a higher number of nevi, however Ribero and co-
workers showed positive correlation of serum vitamin D level
and nevi count (228). These authors suggested that melanomas
associated with a low vitamin D level might be a different
type from those associated with a higher nevi count, thus
further studies are required to explain the association between
nevi, melanoma and vitamin D level.

Correlation between vitamin D intake (supplementary or
dietary) and melanoma risk is still incompletely understood
(229). 

Modulation of vitamin D signaling in melanoma – Clinical
experimental data. Our study on clinical material showed
that the reduction of VDR (both cytoplasmic and nuclear)
correlated with melanoma progression, being the highest in
normal skin and benign nevi, and lowest in most advanced
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melanomas (higher Breslow thickness, Clark level, pT
advancement) and metastatic lesions (230, 231). High VDR
expression in melanoma cells was negatively correlated with
the presence of poor-prognosis markers such as nodular type,
ulceration, high mitotic rate, lack of tumor infiltrating
lymphocytes (TILs). In addition, VDR expression affected
overall survival, with best survival for patients with a high
VDR expression without ulceration (230, 231). Del Puerto

and co-workers observed higher cytoplasmic VDR levels in
nevi than in melanomas, which inversely correlated with
Clark level and pTNM staging. However, in their study,
nuclear VDR expression was higher in melanomas (232).
This surprising pattern might have been secondary to the
specificity of the antibodies used in the study (in contrast to
our study, the authors used polyclonal antibodies, and did not
verify specificity) and use of a different assay method.
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Table I. Changes of vitamin D receptor (VDR, nuclear), cytochrome P450 family 27 subfamily B member 1 (CYP27B1), cytochrome P450 family
24 subfamily A member 1 (CYP24A1), retinoic acid receptor-related orphan receptor alpha (RORα, nuclear), and RORγ (nuclear) in relation to
the expression in normal skin (only statistically significant change are indicated). 

Pigmented lesion                                                                                                          Immunoexpression

                                                              VDR                            CYP27B1                         CYP24A1                              RORα                             RORγ

Nevi                                                          ↓                                       =                                        ↑                                        ↓↓                                    ↓
Melanoma – in situ                                 ↓                                       ↓                                      ↑↑↑                                     ↓↓↓                                 ↓↓
Melanoma - RGP                                   ↓↓                                    ↓↓                                      ↑↑                                      ↓↓↓                                 ↓↓
Melanoma - VGP                                  ↓↓↓                                  ↓↓↓                                      ↑                                       ↓↓↓                                ↓↓↓
Metastasis                                              ↓↓↓                                  ↓↓↓                                      =                                       ↓↓↓                                ↓↓↓

RGP: Radial growth phase; VGP: vertical growth phase; =: no change; ↑/↑↑/↑↑↑: increase of expression; ↓/↓↓/↓↓↓: decrease of expression.

Table II. Correlation of selected clinico-pathomorphological melanoma features and the expression of vitamin D receptor (VDR, cytoplasmic and
nuclear), cytochrome P450 family 27 subfamily B member 1 (CYP27B1), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), retinoic
acid receptor-related orphan receptor alpha (RORα, cytoplasmic and nuclear), and RORγ (cytoplasmic and nuclear) in primary melanomas. Analysis
was performed with Pearson correlation tests. 

Melanoma feature                                                                                               Immunoexpression

                                                           VDR                         CYP27B1       CYP24A1                               RORα                                        RORγ

                                     Cytoplasmic          Nuclear                                                               Cytoplasmic          Nuclear           Cytoplasmic         Nuclear

Breslow thickness          r=−0.2860              NSA              r=−0.3796          r=−0.4035         r=−0.1924         r=−0.2914          r=−0.4108         r=−0.3109
                                        p=0.0056                                     p=0.0002           p=0.0008          p=0.0458           p=0.0048           p=0.0003          p=0.0049
Clark level                            NS               r=−0.2659         r=−0.3897          r=−0.3087         r=−0.1879         r=−0.2473          r=−0.4242         r=−0.3254
                                                                  p=0.0093           p=0.0001           p=0.0087          p=0.0497           p=0.0145           p=0.0002          p=0.0034
pT                                   r=−0.1938         r=−0.3076         r=−0.2870          r=−0.3749         r=−0.2395         r=−0.3284          r=−0.4008         r=−0.3277
                                        p=0.0478           p=0.0036           p=0.0049           p=0.0020          p=0.0193           p=0.0020           p=0.0004          p=0.0034
pN                                         NS                     NSB               r=−0.3159          r=−0.3705         r=−0.2580         r=−0.2802          r=−0.2773         r=−0.2863
                                                                                             p=0.0022           p=0.0023          p=0.0127           p=0.0074           p=0.0115          p=0.0100
pM                                        NS                     NSC               r=−0.2590               NSF                    NS                     NS                r=−0.2133               NS
                                                                                             p=0.0102                                                                                           p=0.0415
TILs                                     NSD                    NS                     NS                      NS                r=0.2198            r=0.3530                 NS                     NS
                                                                                                                                                  p=0.0282           p=0.0009
Overal stage                        NSE               r=−0.3174         r=−0.3826          r=−0.4297         r=−0.2569         r=−0.2953          r=−0.4545         r=−0.4043
                                                                  p=0.0028           p=0.0002           p=0.0004          p=0.0131           p=0.0051           p<0.0001          p=0.0003
Presence of ulceration    r=−0.3396         r=−0.4197         r=−0.1903          r=−0.3490         r=−0.2294         r=−0.3612          r=−0.3382         r=−0.3570
                                        p=0.0016           p=0.0001           p=0.0475           p=0.0042          p=0.0254           p=0.0008           p=0.0029          p=0.0018

TILs: Tumor-infiltrating lymphocyes; NS: not statistically significant relationship. AHigher in melanomas with Breslow thickness <1 mm versus >4 mm
(p<0.05 by ANOVA) (230). BHigher in pN1 versus pN3 melanomas (p=0.0033) as determined by t-test) (231). CHigher in pM0 versus pM1 melanomas
(p=0.0495 by t-test (231). DLower in melanomas without TILs or with non-brisk versus melanomas with brisk TILs (p=0.0133 by t-test (231). EHigher
in overall stage 1 versus overall stage 4 melanomas (p<0.01 by ANOVA) (230). FHigher in pM0 versus pM1 melanomas (p<0.05 by t-test) (234).



In addition, we also observed modulation of the
expression of enzymes involved in vitamin D metabolism.
CYP27B1 expression, as well VDR, was reduced in
melanomas, showing the lowest level in most advanced
primary tumors and metastatic melanomas (233). However,
there was a lack of correlation between the presence of an
ulceration or lack of TILs and CYP27B1 expression.
However, CYP27B1 expression was accompanied by a lower
proliferation index and better overall and disease-free
survival (233). VDR and CYP27B1 expression were also
negatively correlated to pigmentation in melanoma (230,
233). The correlation of CYP24A1 and melanoma
progression is complex. CYP24A1 expression was lowest in
metastatic lesions, and highest in benign nevi and localized
melanomas (pT1-2, Clark level 1-2, Breslow thickness <2
mm, stage 1-2, pN0). Additionally, patients with melanoma
showing poor prognostic markers such as nodular type, high
mitotic index, ulceration and necrosis had low CYP24A1
expression. CYP24A1 expression was positively correlated
to pigmentation in clinical samples of melanoma, which was
in contrast to VDR and CYP27B1 expression (234). 

Similar to VDR, RORα and RORγ expression decreased
with melanoma progression, with the lowest expression being
observed in metastatic melanomas, and the highest in benign
melanocytic tumors. The substratification of melanomas
according to Breslow thickness, Clark level, and overall stage
revealed that more advanced primary tumors had reduced ROR
expression. Non-metastasizing melanomas (pN0) had higher
ROR levels and ulceration, nodular type, lack of TILS and had
lower ROR expression. ROR expression was highest in
amelanotic lesions (121). The summary of changes in the
expression of these markers is presented in Table I. Correlation
of selected clinico-pathomorphological melanoma features and
the expression of VDR, CYP27B1, CYP24A1, RORa and
RORg in primary melanomas is presented in Table II. Most
recently, we reported on the complex relationship between
expression of VDR, RORα and RORγ receptors with hypoxia-
indicuble factor 1α levels in human melanomas (235).

In summary, alterations in vitamin D activation, its local
and systemic levels, and vitamin D-regulated signaling
pathways can result in loss of anticancer protection provided
by vitamin D and promote melanoma development. This
suggests that impairment of the vitamin D endocrine system
operation in melanoma cells is related to melanoma
progression and poor prognosis.

Clinical trials

Clinical trials are currently investigating the effects of
vitamin D therapy on patients with melanoma. Italian
MelaViD (ClinicalTrials.gov Identifier: NCT01264874),
registered in 2010 (236), is a randomized, double blind
phase II clinical trial on vitamin D supplementation for

patients after resection of stage II melanoma (n=150),
treated with 100,000 IU of vitamin D3 every 50 days for 3
years. Disease-free survival has been defined as a primary
end-point of efficacy. Overall survival, Breslow thickness
and VDR were also measured. A Belgian-Hungarian ViDMe
randomized controlled trial (ClinicalTrials.gov Identifier:
NCT01748448) (237) is a multicenter randomized double
blind placebo-controlled phase III trial, registered in 2012,
with monthly administration of 100,000 units of vitamin D
or placebo (Arachidis oleum raffinatum) to 500 patients
with melanoma. This study examines the relationship
between disease-free survival, melanoma subtype, anatomic
site and vitamin D receptor, the vitamin D pathway and
vitamin D level at the time of diagnosis and at 6 months
intervals during the study. The duration of this trial is 3.5
years or until relapse. An Australian-New Zealand Clinical
Mel-D pilot placebo-controlled randomized phase II trial
(Australia and New Zealand Clinical Trials Registry
ACTRN12609000351213) (238) is determining the efficacy
of oral administration of high-dose vitamin D (loading dose
of vitamin D of 500,000 IU followed by a dose of 50,000
IU of vitamin D monthly for 2 years) versus placebo in 75
patients with surgically resected stage IIb, IIc, IIIa (N1a,
N2a) or IIIb (N1a, N2a) melanoma. A Danish retrospective
trial (registered in 2017) on serum vitamin D effects on
plasma levels of sPD-1 in 40 patients with melanoma
patients at baseline, 3 and 6 weeks after treatment initiation
with pembrolizumab (anti-PD1 therapy) was approved for
the treatment of advanced melanoma followed by 3 years of
follow-up (ClinicalTrials.gov Identifier: NCT03197636)
(239). We are awaiting the results of this trial. 

Conclusion

Published reports presenting the association between melanoma
risk and serum vitamin D level and vitamin D intake have
shown inconsistent results. The role of calcitriol in the
modulation of immune response needs to be clarified, since it
was suggested that tumor resistance to 1,25(OH)2D3 and its
derivatives might be related to suppression of antitumor
immunity. However, both experimental- and clinical-based
studies clearly suggest that disturbances in vitamin D signaling
may be related to melanoma development, progression and
disease-free and overall survival of patients. Disruption of local
vitamin D level might result from altered vitamin D
metabolism in melanoma cells. The anti-melanoma efficacy of
vitamin D requires proper function of both VDR and
metabolizing enzymes. Since VDR, CYP27B1, CYP24A and
ROR expression are related to the prognosis of patients with
melanoma, they can be considered as potential biomarkers,
similar to the serum vitamin D level. In addition, vitamin D
and its new derivatives are promising candidates in the
prevention and treatment of melanoma (Figure 1). 
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