
Abstract. Background/Aim: Although epidermal growth factor
receptor (EGFR) is frequently activated in lung and pancreatic
cancers, the efficacy of EGFR tyrosine kinase inhibitors
(EGFR-TKIs) is limited. Recently, brexpiprazole, an
antipsychotic drug, was reported to chemosensitize glioma cells
to osimertinib, a third-generation EGFR-TKI, by suppressing
survivin, an anti-apoptotic protein, but their combinational
effects on lung and pancreatic cancers remain unknown. The
aim of this study was to examine the combinational effects of
brexpiprazole and osimertinib on lung and pancreatic cancer
cells in vitro and in vivo. Materials and Methods: YM155, a
suppressor of survivin, siRNA, and immunoblot were used to
examine the role of survivin in osimertinib-resistance. The effect
of drugs on cell viability in vitro was examined by trypan blue
staining. The in vivo effects of drugs on tumor growth were
examined using a xenograft mouse model. Results:
Brexpiprazole exerted combinational effects with osimertinib in
vitro. Pharmacological and genetic suppression of survivin
chemosensitized the cells to osimertinib. Moreover, the
combination of brexpiprazole and osimertinib effectively
suppressed tumor growth in a mouse xenograft model.
Conclusion: Brexpiprazole is a promising drug for lung and
pancreatic cancer in combination with osimertinib.

The epidermal growth factor receptor (EGFR) pathway is
activated by gene mutation, gene amplification, or both in

several types of cancer, including non-small-cell lung cancer
(NSCLC), pancreatic cancer, glioblastoma, colorectal cancer,
breast cancer, and squamous cell carcinoma of the head and
neck (1, 2). The activation of the EGFR pathway functions
in the development and progression of cancer. Therefore, it
is one of the targets of cancer chemotherapy using EGFR
tyrosine kinase inhibitors (EGFR-TKIs), anti-EGFR
antibodies, or immunotherapy against EGFR.

In NSCLC, activation mutations of the EGFR gene are
detected in ~15-20% of cases (3, 4). The majority of NSCLC
harbors the wild-type EGFR gene, but it is primarily resistant
to EGFR-TKIs (5, 6). Although previous studies, including
ours, have identified potential chemosensitizers of EGFR-
TKIs in wild-type EGFR NSCLC, they have not reached
clinical use (7-9). Thus, chemosensitizers to overcome the
primary resistance to EGFR-TKIs in wild-type EGFR
NSCLC are required. On the other hand, for patients with
mutant EGFR NSCLC, first-generation EGFR-TKIs
(gefitinib and erlotinib) are used as the first-line treatment.
However, long-term treatment with EGFR-TKIs causes
secondary resistance by several mechanisms, including the
T790M resistance mutation, which is the most common
mechanism of resistance, in approximately 50% of patients
treated with first-generation EGFR-TKIs (10). Osimertinib,
an oral, third-generation, irreversible EGFR-TKI, was
developed to overcome resistance mediated by the T790M
EGFR mutation (11, 12). In the phase III FLAURA trial, the
efficacy and tolerability of osimertinib were found to be
superior to those of standard EGFR-TKIs as first-line
treatment for NSCLC, and osimertinib is currently
recommended as first-line treatment (13). However, acquired
resistance against osimertinib may develop and prevent an
optimal outcome (14). Thus, chemosensitizers that overcome
the acquired resistance to osimertinib in mutant EGFR-
NSCLC are required.

EGFR-TKIs are also used for patients with pancreatic
cancer. In pancreatic cancer, EGFR is overexpressed, and
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therapy targeting EGFR has been reported as promising (15,
16). Indeed, in a phase III clinical trial, erlotinib combined
with gemcitabine improved the clinical outcome compared
with gemcitabine alone (17-19). However, the prognosis of
pancreatic cancer is poor. Therefore, reagents that augment
the effects of EGFR-TKIs in pancreatic cancer are needed.
As osimertinib has a better toxicity profile than standard
EGFR-TKIs in clinical studies (12, 13), osimertinib is a
candidate EGFR-TKI for pancreatic cancer.

Brexpiprazole is a novel agent for depression and
schizophrenia (20-22). Brexpiprazole was developed as a
successor to aripiprazole, a dopamine-serotonin activity
modulator with anti-cancer activity (23). Although the
chemical and pharmacological properties of brexpiprazole are
similar to those of aripiprazole, brexpiprazole has a better
toxicity profile because of its lower intrinsic activity at D2
and D3 dopaminergic receptors (21, 24). We have recently
revealed that, similar to aripiprazole, brexpiprazole has anti-
cancer effects and acts as a chemosensitizer to 5-fluorouracil
and gemcitabine in stem cells of NSCLC and pancreatic
cancer (25). Moreover, we have previously reported that
brexpiprazole chemosensitizes glioma stem cells, cancer stem
cells of glioblastoma, to osimertinib by downregulating the
expression of survivin, an anti-apoptotic protein (26). These
results suggest that brexpiprazole acts as a chemosensitizer
of osimertinib in other types of malignancies. However, it
remains unclear whether the endogenous expression of
survivin plays a major role in osimertinib resistance in
NSCLC and pancreatic cancer, and whether brexpiprazole
augments the effects of osimertinib through survivin
suppression in these cancers. Thus, in this study, we explored
the role of brexpiprazole as a chemosensitizer to osimertinib
in wild-type EGFR NSCLC cells, osimertinib-resistant
mutant EGFR NSCLC cells, and pancreatic cancer cells in
vitro and in vivo, and examined the involvement of survivin
in the osimertinib resistance mechanism.

Materials and Methods

Antibodies and reagents. Anti-β-actin (A1978) antibody was
purchased from Sigma (St. Louis, MO, USA). Anti-survivin (#2808)
antibody was from Cell Signaling Technology, Inc. (Beverly, MA,
USA). Osimertinib and YM155 were purchased from Chemscene
LLC. (Monmouth Junction, NJ, USA) and dissolved in dimethyl
sulfoxide (DMSO) to 10 mM and 20 μM stock solutions, respectively.
Brexpiprazole was from Cayman Chemical Company (Ann Arbor,
MI, USA) and was dissolved in DMSO to 10 mM stock solution.

Cell culture and in vitro generation of an osimertinib-resistant cell
line. Human non-small cell lung cancer (NSCLC) cell lines A549
and PC-9 were obtained from the Riken BioResource Center
(Tsukuba, Japan). The human pancreatic cell line PANC-1 was from
the Cell Resource Center for Biomedical Research, Institute of
Development, Aging and Cancer, Tohoku University (Sendai, Japan).

These cell lines were cultured in DMEM/F12 medium supplemented
with 10% fetal bovine serum, 100 units/ml of penicillin, and 100
μg/ml of streptomycin as serum-cultured non-stem cancer cells. The
establishment of cancer stem cells, A549 CSLC and PANC-1 CSLC
cells, have been previously reported (27-30). The authenticity of
A549 CSLC and PANC-1 CSLC cells was confirmed by genotyping
of short tandem repeat (STR) loci (Bio-Synthesis, Inc., Lewisville,
TX, USA) and comparing with the ATCC STR database for Human
Cell Lines. These cancer stem cells were cultured, as previously
described (28, 30, 31), on collagen I-coated dishes (IWAKI, Tokyo,
Japan) in stem cell culture medium [DMEM/F12 medium with 1%
B27 supplement (Thermo Fisher Scientific, Waltham, MA, USA), 20
ng/ml of EGF and FGF2 (Peprotech, Inc., Rocky Hill, NJ, USA), D-
(+)-glucose (final concentration, 26.2 mM), L-glutamine (final
concentration, 4.5 mM), 100 units/ml of penicillin, and 100 μg/ml
of streptomycin]. The stem cell culture medium was changed every
3 days, and EGF and FGF2 were supplemented in the medium every
day. An osimertinib-resistant subline of PC-9 (PC-9-OR) was
established by culturing in the presence of increasing concentrations
of osimertinib (0.1-1.5 μM) over a two-month period. PC-9-OR cells
were maintained in the presence of 1.5 μM osimertinib.

Cell viability assays. Viable and dead cells were identified by their
ability and inability to exclude vital dyes, respectively (23, 30, 32).
In short, harvested cells were stained with 0.2% trypan blue as a
vital dye, and the numbers of viable and dead cells were counted
using a hemocytometer. The percent of dead cells (%) was defined
as 100× ‘the number of dead cells’/(‘the number of viable cells’ +
‘the number of dead cells’). 

Immunoblot analysis. Cells or tumors were washed with PBS and lysed
in RIPA buffer [10 mM Tris-HCl (pH 7.4), 0.1% SDS, 0.1% sodium
deoxycholate, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 1.5 mM
Na3VO4, 10 mM NaF, 10 mM sodium pyrophosphate, 10 mM sodium
β-glycerophosphate, and 1% protease inhibitor cocktail set III (Sigma)].
After centrifugation for 10 min at 14,000 × g at 4˚C, the supernatants
were harvested as the cell lysates, and the protein concentration of cell
lysates was measured using a BCA protein assay kit (Thermo Fisher
Scientific). Cell lysates containing equal amounts of protein were
separated by SDS-PAGE and transferred to polyvinylidene difluoride
membranes. The membranes were probed with primary antibodies
followed by an appropriate HRP-conjugated secondary antibody
according to the manufacturer’s instructions. The immunoreactive
bands were visualized using Immobilon Western Chemiluminescent
HRP Substrate (Merck Millipore, Darmstadt, Germany) and ChemiDoc
Touch Imaging System (Bio-Rad, Hercules, CA, USA).

Gene silencing by siRNA. siRNAs against human survivin (BIRC5
#2; HSS 179404, #3; HSS 179405) and Medium GC Duplex #2 of
Stealth RNAi™ siRNA Negative Control Duplexes (non-targeting)
were purchased from Thermo Fisher Scientific. Cells were transiently
transfected with RNAs using Lipofectamine RNAiMAX™ (Thermo
Fisher Scientific).

Mouse study. Mouse xenograft studies were carried out as
previously described (28, 33). After anesthetization (intraperitoneal
injection of medetomidine, midazolam, and butorphanol at 0.3 mg,
4 mg, and 5 mg per kg of body weight, respectively), A549 cells
(1×106) suspended in 200 μl PBS were implanted subcutaneously
in the flank region of 7-week-old male BALB/cAJcl-nu/nu mice
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(CLEA Japan, Inc., Tokyo, Japan). The tumor volume was assessed
by measuring tumor diameters using calipers and calculated as the
larger diameter × smaller diameter × height. For systemic
administration of drugs, stock solutions of brexpiprazole (4 mg/ml)
and osimertinib (2 mg/ml) were diluted in DMSO to prepare 100-
μl solutions for each injection, respectively. Brexpiprazole was
administered by oral gavage to mice at 3 mg/kg twice a week and
osimertinib was orally administered at 5 mg/kg five times a week.
Drug treatment started 6 days after tumor implantation and
confirmation of subcutaneous tumor formation, and tumor-bearing
mice were randomized into four groups before the initiation of drug
treatment. All animal experiment protocols were approved by the
Animal Research Committee of Yamagata University.

Statistical analysis. The results are expressed as the means and
standard deviation (SD). The differences were compared using the
two-tailed t-test. p-Values < 0.05 were considered significant and
indicated with asterisks.

Results

Brexpiprazole sensitizes serum-cultured cancer cells and
cancer stem cells of NSCLC and pancreatic cancer to
osimertinib. First, the effects of co-treatment with
brexpiprazole and osimertinib were examined. The
representative NSCLC cell lines were: A549, which harbors
wild-type EGFR, and PC-9-OR, which is a subline
established by culturing PC-9 cells harboring a EGFR-TKI-
sensitive mutated EGFR gene with osimertinib (acquired
resistance); the representative pancreatic cell line was
PANC-1. Although the concentration of osimertinib used in
the experiments (2 μM) was sufficiently high to suppress
the growth of osimertinib-sensitive PC-9 cells [data not
shown and references (34, 35)], their growth was suppressed
only mildly (Figure 1A), suggesting that these cells were
resistant to osimertinib. Compared with osimertinib or
brexpiprazole alone, co-treatment with osimertinib and
brexpiprazole significantly reduced the cell number and
increased cell death in these serum-cultured non-stem
cancer cells (Figure 1A). Since we have previously reported
that brexpiprazole sensitizes glioma stem cells to
osimertinib (26), we examined whether brexpiprazole
reduces osimertinib resistance in cancer stem cells of
NSCLC and pancreatic cancer. Co-treatment with
brexpiprazole and osimertinib significantly reduced the
number of viable cells and increased death of cancer stem
cells (Figure 2A). 

Brexpiprazole reduces endogenous expression of survivin in
NSCLC and pancreatic cancer cells, which is essential for
their osimertinib resistance. Reduction of the expression of
survivin, an anti-apoptotic protein, has been reported to
sensitize cancer cells to EGFR-TKIs (36-39), and we have
recently demonstrated that brexpiprazole reduces the
expression of survivin in serum-cultured cancer cells,

including A549 and PANC-1 cells, and cancer stem cells,
including A549 CSLC and PANC-1 CSLC cells (25). Thus,
we examined the expression of survivin in the serum-cultured
cancer cells and cancer stem cells of NSCLC and pancreatic
cancer that were treated with brexpiprazole at the
concentration that induces sensitization. Brexpiprazole
reduced the expression of survivin in these cells (Figure 1B
and 2B).

To assess whether the expression of survivin plays a role
in osimertinib resistance in these cells, we next examined
whether YM155, a pharmacological inhibitor of survivin
(40, 41), sensitizes these cells to osimertinib. After
confirmation of the reduction of survivin expression by
YM155 (Figure 3A), the osimertinib-resistant cell lines
were co-treated with osimertinib and YM155. YM155 was
found to sensitize these cell lines to osimertinib to a degree
similar to that of brexpiprazole (Figure 3B). Moreover, to
exclude the possibility of unintentional off-target effects of
YM155, we investigated the effects of genetic
downregulation of survivin by siRNA on the sensitivity to
osimertinib in the resistant cell lines. After confirmation of
the downregulating effects of two siRNAs (Figure 4A), the
osimertinib-resistant cell lines were administered siRNAs
against survivin and then treated with osimertinib.
Suppression of survivin by siRNAs attenuated osimertinib
resistance of osimertinib-resistant cell lines (Figure 4B).
Together, these results demonstrate that the endogenous
expression of survivin is an essential factor determining
cellular resistance to osimertinib, and suggest that
brexpiprazole sensitizes NSCLC and pancreatic cancer cells
to osimertinib, at least in part, through the downregulation
of survivin expression.

Brexpiprazole attenuates osimertinib-resistance in vivo. The
above described results suggested that survivin inhibition
effectively reverses the resistance to osimertinib in NSCLC
and pancreatic cancer cell lines in vitro. In order to examine
the therapeutic relevance of these in vitro findings in vivo,
we evaluated the efficacy of co-treatment with osimertinib
and brexpiprazole against the wild-type EGFR NSCLC cell
line A549. After confirming the formation of tumors
following implantation of A549 into nude mice, both
osimertinib and brexpiprazole were repeatedly orally
administered. As a result, tumor growth was significantly
inhibited by the combination of osimertinib and
brexpiprazole (Figure 5A). Although the mice that received
osimertinib and brexpiprazole lost weight at the beginning
of treatment, their body weight later recovered to a level
similar to that of the other groups (Figure 5B). No adverse
effects were observed. We also examined whether
brexpiprazole reduces the expression of survivin in vivo, and
found that its expression in the tumors was decreased
(Figure 5C).
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Figure 1. Brexpiprazole sensitizes serum-cultured cancer cells to
osimertinib. Serum-cultured cancer cells were incubated with or
without 2 μM osimertinib and with or without brexpiprazole for 3
days (brexpiprazole concentration was 2.5 μM for A549 and
PANC-1, and 1.5 μM for PC-9-OR), and then subjected to cell
viability assay using trypan blue (A). The initial number of A549
and PANC-1 cells was 5×104 and that of PC-9-OR cells was
1×105. The total number of cells (viable and dead) (left panels)
and the percentage of dead cells (right panels) are shown. Values
represent means±SD from quadruplicate samples of a
representative experiment repeated three times with similar results.
*p<0.05. In the left panels, the number of viable cells was
compared. Serum-cultured cancer cells were incubated with or
without brexpiprazole (brexpiprazole concentration was 2.5 μM for
A549 and PANC-1, and 1.5 μM for PC-9-OR) for 3 days, and then
subjected to immunoblot analysis of survivin (B).



Discussion
As EGFR signaling is activated in several types of cancers,
the effectiveness of therapies targeting EGFR has been
clinically confirmed. However, their effectiveness is
sometimes poor or limited because of primary or acquired
resistance (42). Although several studies have been performed
to find methods to overcome this resistance, such therapies
have not reached clinical use. In this study, we found that
brexpiprazole, a novel serotonin-dopamine activity modulator
with an excellent safety profile, sensitized wild-type EGFR
and osimertinib-resistant NSCLC and pancreatic cancer, which
have intrinsic or acquired resistance, to osimertinib in vitro
and in vivo. As brexpiprazole is currently clinically used for
schizophrenia and depression with a known safety profile, our
study suggests that it is a promising candidate chemosensitizer
to osimertinib for EGFR-TKI-resistant cancers.

Several studies targeting EGFR-TKI resistance have been
reported. For wild-type EGFR NSCLC, the therapeutic effects
of erlotinib are increased by the inhibition of GLUT1 (8),
restoration of the TUSC gene (43), inhibition of MER proto-
oncogene protein tyrosine kinase (MERTK) (9), and pre-
treatment by cisplatin-based chemotherapy (44). However, these
strategies have not been clinically applied. Regarding mutant
EGFR NSCLC, osimertinib was originally developed to
overcome the T790M mutation of EGFR that confers resistance
to first- and second-generation EGFR-TKIs, but resistance to
osimertinib is also acquired during treatment (11, 45). The
mechanisms of the acquired resistance to osimertinib include
loss of the T790M mutation, mutation of EGFR, such as C797S
mutation, activation of bypassing pathways: HER2
amplification, MET amplification, PIK3CA activation mutation,
up-regulation of AXL, and histological transition by small cell
transformation or epithelial-mesenchymal transition (45-47).
Although preclinical studies to overcome osimertinib resistance
have been performed (47-50), a standard therapy for
osimertinib-resistant mutant EGFR NSCLC has not been
established (14, 46). For pancreatic cancer, preclinical and
clinical studies to improve the effects of erlotinib have been
carried out, but their results have not been applied for clinical
use (51-54). Survivin, a member of the inhibitor of apoptosis
protein family, mediates the resistance to EGFR-TKI in
NSCLC, and its suppression indeed chemosensitizes NSCLC
cells to erlotinib (36-39). However, it remains to be
demonstrated whether inhibiting survivin expression is a viable
approach to chemosensitize cancer cells to osimertinib. In this
study, we confirmed that genetic and pharmacological inhibition
of survivin expression sensitized NSCLC and pancreatic cancer
cells, which have intrinsic or acquired osimertinib resistance, to
osimertinib, and that brexpiprazole, which reduced survivin
expression in these cells, effectively sensitized them to
osimertinib. These results suggested that survivin is, at least in
part, one of the major factors in osimertinib resistance, and that

its suppression prevents different resistant mechanisms in
NSCLC and pancreatic cancer cells.

As survivin has been implicated in chemoresistance in
cancer, it is regarded as a promising target for cancer therapy
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Figure 2. Brexpiprazole sensitizes cancer stem cells to osimertinib. Cancer
stem cells were cultured with or without 2 μM osimertinib and with or
without 2.5 μM brexpiprazole for 3 days, and then subjected to cell
viability assay using trypan blue (A). The initial cell number was 1×105
cells for both A549 CSLC and PANC-1 CSLC. The total number of (viable
and dead) (left panels) and the percentage of dead cells (right panels) are
shown. Values represent means±SD from quadruplicate samples of a
representative experiment repeated three times with similar results.
*p<0.05. In the left panels, the number of viable cells was compared.
Cancer stem cells were cultured with or without 2.5 μM brexpiprazole for
3 days, and then subjected to immunoblot analysis of survivin (B).
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Figure 3. Pharmacological survivin inhibition by YM155 sensitizes osimertinib-resistant cells to osimertinib. The indicated serum-cultured cancer
cells and cancer stem cells were cultured with or without 10 nM YM155 (only for PC-9-OR 3 nM) and with or without 2 μM osimertinib for 3 days.
(A), extracts of cells treated with or without YM155 only were subjected to immunoblot analysis of survivin expression. (B) Cells were subjected to
cell viability assay using trypan blue. The initial number of A549 and PANC-1 cells was 5×104 and that of PC-9-OR, A549 CSLC, and PANC-1
CSLC cells was 1×105 cells. Values represent means±SD from triplicate samples of a representative experiment repeated three times with similar
results. *: p<0.05 (comparing viable cells).
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Figure 4. siRNA knockdown of survivin sensitizes osimertinib-resistant cancer cells to osimertinib. Non-targeting siRNA (siControl) or either of the
siRNAs against survivin (siSurvivin#2 or siSurvivin#3) were introduced to the indicated serum-cultured cancer cells or cancer stem cells for 3 days.
(A), cell extracts were subjected to immunoblot analysis of survivin expression. (B) Transfected cells were cultured with or without 2 μM osimertinib
for 3 days, and were then subjected to cell viability assay using trypan blue. The initial number of A549 and PANC-1 cells was 5×104 and that of
PC-9-OR, A549 CSLC, and PANC-1 CSLC cells was 1×105. Values represent means±SD from triplicate samples of a representative experiment
repeated three times with similar results. *p<0.05 (comparing viable cells).



(55). Survivin is targeted by several strategies such as small
molecule inhibitors, transcriptional suppression by antisense
oligonucleotide, or RNA interference (56). Although clinical
trials targeting survivin have been performed, the efficacy of
these therapies has not been confirmed or is only limited (57).
YM155, a small molecule that pharmacologically inhibits
survivin, exhibits a favorable safety tolerability profile (58).

However, clinical trials using YM155 are insufficient and
there are many unknown factors (59-61). LY2181308, a
survivin antisense oligonucleotide, has exhibited a favorable
toxicity profile in a phase I clinical trial (62). However, its
efficacy was not confirmed in a randomized phase II clinical
trial for castration-resistant prostate cancer (63). From the
perspective of drug repurposing, we have previously
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Figure 5. Dual administration of brexpiprazole and osimertinib reduces osimertinib-resistance in vivo. Wild-type EGFR NSCLC cells (A549, 1×106
cells) were subcutaneously implanted into the trunk of nude mice. After confirming tumor formation, the indicated drugs (3 mg/kg of brexpiprazole
twice a week, 5 mg/kg of osimertinib 5 times a week, or both) were orally administered. (A), the tumor volume of each group is shown (n=8, each
group). (B). The body weight of the mice is presented. (C). The tumor tissues excised from the control and brexpiprazole-treated mice were subjected
to immunoblot analysis of survivin. *p<0.05, comparison at the end of the study.



demonstrated that clinically used antipsychotics, olanzapine
and aripiprazole, reduce survivin expression (23, 32), but
olanzapine may cause deep sedation (64) and aripiprazole
causes akathisia (20, 21). Moreover, cancer patients are frail
and sensitive to medications due to insufficient kidney and
liver functions. Brexpiprazole is better than aripiprazole
because it has fewer side effects such as akathisia and
extrapyramidal symptoms (21, 24). Brexpiprazole is used as
an antipsychotic and antidepressant (65, 66), and thus may be
effective from the standpoint of psycho-oncology.
Additionally, it is widely used worldwide and has been
approved by the Food and Drug Administration. Therefore, it
can be promptly adapted to clinical settings.

In this study, we showed that the endogenous expression of
survivin is a major factor in osimertinib resistance in wild-type
and mutant EGFR NSCLC, and pancreatic cancer, and that
brexpiprazole chemosensitizes these cancer cells to osimertinib,
most likely through suppression of survivin expression. In
conclusion, brexpiprazole is a promising drug in combination
with osimertinib to treat NSCLC or pancreatic cancer.
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