
Abstract. Background/Aim: Cancer incidence and
mortalities are growing worldwide, therefore research and
development of more effective and less invasive treatments,
such as photodynamic therapy, are needed. Herein, we
investigated the methylene blue (MB) photoactivation effects
in lung epithelial cells (BEAS-2B) and lung adenocarcinoma
cells (H-441). Materials and Methods: The reactive oxygen
species (ROS) produced by the laser photoactivation of MB
in aqueous solutions and cell cultures were measured with
probes, and the cell viability was evaluated with a
colorimetric assay. Results: MB up to 31.26 μM did not
induce detectable effects in BEAS-2B cells. However, H-441
cells presented adverse effects below that concentration in the
same range of fluencies studied. These results are in
concordance with the ROS production in H-441 cells, while
in BEAS-2B cells the production of ROS was less significant
compared to the control. Conclusion: Photoactivation of MB
at concentrations below 31.26 μM could be used for the
selective treatment of H-441 cells over non-cancer cells.

Research in photodynamic therapy (PDT) has been increasing
as an alternative and promising treatment for cancer as well as
unrelated diseases. PDT has been proved as a practical approach
for the treatment of age-related macular degeneration (1, 2),
microbial infections (3-5), atherosclerosis (6), and psoriasis (7).
Additionally, research on the effectiveness of PDT in different

types and locations of cancer has been reported (8-11).
Methylene blue (MB) has been of great interest in PDT due to
its ability to absorb light intensively within the therapeutic
window, and upon radiation, it damages biomolecules by
producing reactive oxygen species (ROS) (12). ROS are
involved in several biological functions, but when over-
produced, they can lead to cell death (13-16). ROS quantification
could provide information concerning the effectiveness of PDT.
Fluorescent probes, such as 2’,7’-dichlorodihydrofluorescein
diacetate (DCFH-DA) and 1,3-Diphenylisobenzofuran (DPBF),
are used to determinate ROS in solutions and cell cultures due
to their high sensitivity and facile determination (17-23).
Previous studies of PDT using MB in squamous cell carcinoma
have reported a decrease in tumor size and cell proliferation, and
an increase in cytokine levels (11). Recently it was shown that
the effect of photoactivated MB in non-malignant epithelial cell
lines and different molecular subtypes of breast tumors had a
higher impact on the malignant cell lines, without  affecting non-
malignant cells at a significant level (9). The objective of this
study was to evaluate the MB photoactivation-induced
differential response in lung epithelial (BEAS-2B) and lung
adenocarcinoma cells (H-441). Our results indicate a differential
response of MB photoactivation between BEAS-2B and H-441
cells. 

Materials and Methods 

Determination of ROS in solutions. The photoactivation of MB was
evaluated in aqueous solutions to correlate the concentration of MB
and the energy fluence with the generation of ROS. Aqueous-
DMSO solutions of 50 μM DPBF (Sigma-Aldrich, St. Louis, MO,
USA) and 6.25 μM or 31.26 μM of MB (Química Suastes, Del
Tlalpan, CMX, Mexico) were prepared. Solutions were irradiated
every 2 seconds (s) with an energy fluence of 0.2 J/cm2 using a red
laser (660 nm, 100 mW). UV/VIS absorption spectra were collected
using a Genesis 10S spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).
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Cell culture. BEAS-2B cells and H-441 cells were cultured in LHC-9
serum-free media and RPMI complete media (Thermo Fisher
Scientific, Waltham, MA, USA), respectively, and were incubated at
37˚C in a 5% CO2 environment. Cells were seeded (43,750 cells/cm2)
in 96-well plates 24 hours before experimentation. Cells were treated
with MB solution in LCH-9 and serum-free RPMI media, respectively
for each cell line, at different concentrations (0-156 μM), and were
incubated for 3 hours. Then, media was removed, and cells were
washed three times, twice with Dulbecco's phosphate-buffered saline
(Thermo Fisher Scientific, Waltham, MA, USA) and once with media. 

In vitro PDT treatment. Fresh LCH-9 and serum-free RPMI media
were added to BEAS-2B and H-441 cell cultures, respectively, for
PDT treatment (5, 24, 25). Cells were irradiated with energy fluence
ranging between 0 and 36 J/cm2. 

Determination of intracellular ROS. Cells were cultured as
described previously and were treated with HDFC-DA (Biotium) at
a final concentration of 5 μM. Then, cells were incubated at 37˚C
for 40 minutes followed by in vitro PDT treatment as described
before. Two hours following PDT treatment, fluorescence intensity
was quantified by excitation at 485 nm and emission at 528 nm
using a cell imaging reader (BioTek, Winooski, VT, USA). 
Determination of cell survival. Following PDT treatment cells were
incubated for 36 hours, and a colorimetric 3-(4, 5-dimethyle thiazol-
2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay was carried
to quantify cell survival (25-27). 

Statistical analysis. All the experiments for the determination of
intracellular ROS and cell survival produced for the applied treatments
were compared between groups using paired Student’s t-tests assuming
equal variances. When the p-values were minor than 0.05, the
differences were considered statistically significant. 

Results and Discussion

ROS production by MB photoactivation in aqueous-DMSO
solutions was verified following the DPBF absorbance decay
at 417 nm, as presented in Figure 1A and C. This decay is
caused by ROS produced in the form of singlet oxygen.
DPBF absorbance peak was maintained constant in irradiated
solutions free of MB (results not shown here), confirming
that irradiation by itself does not produce ROS in the range
of fluence studied. When MB was applied, a proportionality
between DPBF absorbance decay and the irradiation time
was observed (12, 28). These proportionalities are presented
in Figure 1B and D for MB concentrations of 6.25 μM and
31.26 μM, respectively. These figures were plotted by
considering the first-order decay of DPBF (28-31). DPBF
decay constants were 0.25 s–1 and 0.17 s–1 for the respective
concentrations of MB of 6.25 μM and 31.26 μM. These
values are proportional to the ROS generation for each
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Figure 1. DPBF decay following irradiation in the presence of 6.25 μM of MB (A) and 31.26 μM of MB (C). Proportionality between DPBF
absorbance decay and the irradiation time in the presence of 6.25 μM of MB (B) and 31.26 μM of MB (D).



experiment; it is noted that for lower concentration of MB,
more ROS were produced. This effect could be explained by
the formation of dimers, which are less effective generators
of ROS (12, 28). Also, MB absorbance peak at 665 nm
decayed with irradiation time, as could be observed in Figure
1A and C, indicating a degree of aggregation of MB and
confirming the presence of dimers (12, 32).  

ROS generated in the cell cultures were measured by their
reaction with DCFH-DA, producing the fluorescent molecule
2,7-dichlorofluorescein (DCF). Figure 2 shows DCF
fluorescence increments for the different concentrations of
MB and the different levels of energy fluence evaluated.
ROS were produced in BEAS-2B and H-441 cells without
MB and irradiation. This result could be attributed to some
oxidative stress caused by the cell culture process itself,
facilitating the generation of reactive species (33).

Fluorescence results are presented in arbitrary units (a.u) by
adjusting to the controls (without MB and irradiation).
BEAS-2B and H-441 cell survival at different MB
concentrations and different levels of energy fluence are
presented in Figure 3A and B, respectively.

In general, an increment in the ROS production
concerning the MB concentration was observed, as depicted
in Figures 2A and 2B, for BEAS-2B and H-441 cells,
respectively. Also, the energy fluence by itself does not
contribute to the ROS production, with no significant
statistical differences, as shown in Figure 2A and B. Figure
2A for BEAS-2B cells shows no significant statistical
differences related to the energy fluence between 31 μM and
63 μM of MB, except at the set of values of 36 J/cm2 and
63 μM of MB. At this set of values, the BEAS-2B cell
survival drops remarkably from 100% to 0%, as observed in
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Figure 2. ROS production in (A) BEAS-2B and (B) H-441 cells after treatment with MB concentrations ranging from 0 to 156 μM in combination
with energy fluence of 0 J/cm2, 6 J/cm2, 18 J/cm2, and 36 J/cm2. Data presented with respect to sample controls (value of 1). Data represent the
mean±standard deviation for n=3. Arbitrary units (a.u).

Figure 3. Cell viability of (A) BEAS-2B and (B) H-441 cells after PDT with MB (0-156 μM) in combination with energy fluence of 0 J/cm2 (l), 
6 J/cm2 (n), 18 J/cm2 (u), and 36 J/cm2 (s). Data represent the mean±standard deviation for n=3.



Figure 3A. The ROS values obtained in BEAS-2B at
concentrations above 63 μM of MB for all the energy
fluence used displayed similar magnitudes to those obtained
at the set of values at 36 J/cm2 and 63 μM of MB. In
consequence, the survival rates drop substantially for all the
energy fluence used, as shown in Figure 3A. 

Non-irradiated BEAS-2B and H-441 cells at different MB
concentrations present significant statistical differences, as
shown in Figures 2A and 3A. This result indicates that MB
itself is inducing ROS generation in both cell lines.
However, the laser irradiation in BEAS-2B contributes to
significant differences compared to H-441 with regards to
the ROS generation at concentrations above 31 μM of MB
and energy fluence of 36 J/cm2. Besides, the laser irradiation
in H-441 cells does not contribute significantly in the ROS
production at any concentration of MB. In contrast, H-441
cell survival drops significantly at concentrations of 31 μM
of MB, and above, when the laser irradiation increases, as
observed in Figure 3A. This outcome could be explained by
the formation of dimers, as observed in the experiments for
the determination of ROS in solutions.  MB dimers are less
effective generators of ROS (28).

The half maximal inhibitory concentration (IC50) of BEAS-
2B cells with MB and energy fluence of 0 J/cm2, 6 J/cm2, 18
J/cm2, and 36 J/cm2, resulted in values of 63.5 μM, 52 μM, 49
μM, and 48 μM of MB, respectively (Figure 3A). The results
for H-441 cell survival show decrements for all the
concentrations of MB analyzed, including the samples not
irradiated. H-441 cells treated with MB and energy fluence of
0 J/cm2, 6 J/cm2, 18 J/cm2, and 36 J/cm2, resulted in values of
IC50 of 47 μM, 39 μM, 24 μM, and 17 μM of MB, respectively
(Figure 3B). This means that lung adenocarcinoma H-441 cells
are more sensitive to PDT with MB compared to lung epithelial
BEAS-2B cells. This result is consistent with other works
reporting that MB was more toxic in erythroleukemic cells
compared to normal peripheral blood mononuclear cells (34).
Studies of PDT using MB in lung adenocarcinoma A549 cells
have shown an enhancement of apoptosis associated with down-
regulation of anti-apoptotic proteins, reducing the mitochondrial
membrane potential and increasing phosphorylation of the
mitogen-activated protein kinase and the generation of ROS (8).
Also, other studies of PDT with MB in B16F1 melanoma cells
shows mitochondria-related apoptosis through a series of steps
beginning with the photochemical generation of ROS that
activate the caspase-9/ caspase-3 apoptosis pathway (35).
Similarly, PDT with MB in HeLa tumor cells triggered
apoptotic cell dead by a mitochondria-dependent apoptotic
pathway (36). Other works report the enhancement of ROS
production and cell death (CHO) by using a combination of
light and ultrasound activation of MB (37). In addition,
derivatives of MB have been reported in the literature, where
longer alkyl chains substituted the methyl groups of MB,
resulting in more phototoxic effects than MB in RIF-1 murine

fibrosarcoma cells. This effect was explained by the
accumulation of the derivatives in the mitochondria (25). 

This work presents the differential response of BEAS-2B
and H-441 cells to MB photoactivation. The increments of
ROS produced by MB photoactivation are directly related to
BEAS-2B and H-441 cell survival. Results suggest that
oxidative stress caused by ROS could be adjusted by
modifying MB concentrations or different levels of energy
fluence. Concentrations of MB above 31.26 μM are required
to decrease BEAS-2B cell survival, while H-441 cell
survival was similarly affected at a lower MB concentration.
These results are in concordance with ROS production in
BEAS-2B and H-441 cells, where larger production was
obtained in H-441 cells. Therefore, selective cell damage
could be achieved by using MB in PDT of lung cancer. 
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