
Abstract. Vitamin D, or more precisely its active metabolite
calcitriol (1,25-(OH)2D3), plays a fundamental role in bone
metabolism and differentiation as well as in intestinal
absorption of calcium and regulation of calcium-phosphate
metabolism. Recent decades have brought about the
discovery of the role of calcitriol in processes regulating cell
differentiation, proliferation, angiogenesis and apoptosis.
This creates the potential for numerous therapeutic
applications of vitamin D in diseases associated with
autoaggressive immune responses or in cancer. This study
presents selected issues regarding current knowledge of the
anti-cancer mechanisms of vitamin D.

The discovery that most tissues have receptors for vitamin
D was a breakthrough in understanding its role in cancer
development. A long-term vitamin D deficiency probably
increases the risk of cancer (1-5). The hypothesis that
vitamin D3 deficiency is linked to cancer development is
supported by the results of experiments on animal models as
well as epidemiological studies investigating the relationship
between exposure to UVB radiation and cancer survival (6-
8). Vitamin D protects the genome against the accumulation
of mutations underlying neoplastic transformation and cancer
progression. At the same time, owing to the anti-tumour
activity of calcitriol and its analogues, these compounds can
be used alone (promyelocytic leukaemia) or in synergy with
other anticancer drugs, mainly cytostatics (9, 10). This
means that the dose of cytostatics can be reduced, thereby
reducing the risk of side effects following chemotherapy. For
example, treatment with calcitriol in combination with
carboplatin, dexamethasone or paclitaxel has been proven

effective against both androgen-dependent and androgen-
independent prostate cancer (10, 11). As in the case of
prostate cancer (PCa), the therapeutic efficacy of calcitriol
has also been confirmed in both hormone-dependent
(oestrogen-receptor-positive) and oestrogen-receptor-
negative breast cancer (12), as well as colorectal and head
and neck cancer (13-17). The mechanism of the anti-
neoplastic activity of vitamin D and its derivatives may vary
depending on the type of cells and tissues. The excessive
supply of calvium is itself considered by some researchers
to be a PCa risk factor, and a low concentration of vitamin
D may additionally increase the risk of prostate cancer by
reducing production of 1,25-(OH)2D3. Moreover, a high
concentration of Ca may inhibit the release of PTH
(parathyroid hormone), which regulates the conversion of
25(OH)D3 to 1,25-(OH)2D3 in the kidneys (18).

Thus, there is a clear dependency between calcium supply and
the concentration of 25(OH)D3 (19, 20). The mechanism of the
biological activity of calcitriol is still quite difficult to explain,
because the degree of inhibition of proliferation, apoptosis and
cell cycle arrest depends on many different factors, primarily the
degree of cell differentiation, the occurrence of growth factors,
the dosage of vitamin D, and calcium concentrations in the intra-
and extracellular environment.

Vitamin D – Cell Cycle Regulation

The growth and proliferation of hormone-dependent epithelial
cells in health and disease depend on many intracellular signal
transmission pathways. The signalling pathways may be
activated by insulin-like growth factor 1 or 2 (IGF-1, IGF-2)
or epidermal growth factor (EGF) and by pro-inflammatory
cytokines such as tumour necrosis factor (TNF), interleukin-2
(IL-2) or granulocyte-macrophage colony-stimulating factor
(GM-CSF). There are also pathways specific for tumours,
called proliferative signalling pathways (21). The activation of
transcription signalling pathways results in the modulation of
numerous target genes which regulate proliferation of cells and
genes influencing processes which mediate cell transformation
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in normal and proliferative tissues, such as inflammation,
angiogenesis, cell mobility, and the ability to metastasize.
These may lead to cell transformation and tumour formation.
Vitamin D, primarily, influences calcium and phosphate
balance, but in recent years a number of publications have
highlighted its multi-faceted activity associated with the
presence of the vitamin D receptor (VDR), including an anti-
tumour effect (22). Although several mechanisms have been
suggested to explain the inhibitory effect of 1,25(OH)2D3 on
the cell cycle, no convincing data have been presented on the
primary mechanism of the regulation of cell division. The most
commonly mentioned mechanisms of cell cycle regulation by
vitamin D are presented below. 

In order for the cell to pass from phase G1 to phase S, in
which DNA synthesis takes place, retinoblastoma (Rb) protein
phosphorylation is required to activate transcription factors of
the E2F family, which activate transcription of many genes,
including cyclins E and A. Rb phosphorylation is catalysed by
specific cyclin-dependent kinases (CDKs), whose activity is
inhibited by p21 and p27 proteins. The complex of
1,25(OH)2D3 and VDR binds to the regulatory site in the
promoter region of the p21 and p27 genes, intensifying their
expression, which leads to inhibition of CDKs, lack of Rb
phosphorylation, and cell-cycle arrest in the G1 phase (23, 24).
The antiproliferative effect of vitamin D also involves
modulation of intracellular kinase pathways (p38 MAPK –
P38 mitogen-activated protein kinases, ERK – extracellular
signal-regulated kinases, and PI3K – phosphoinositide 3-
kinase) and repression of the proto-oncogene Myc, which
plays the key role in cell proliferation (24).

1,25(OH)2D3 and its analogues are known to cause rapid
and concentration-dependent (10–10–10–8 M) activation of
phospholipase C, which is responsible for the hydrolysis of
inositol lipids. This results in activation of protein kinase C
(PKC) which plays an important regulatory in the control of
gene expression; activates expression of the gene encoding
Raf1 – a kinase of mitogen-activated kinase (MAPK). This is
followed by an increase in the activity and phosphorylation of
two members of the kinase family, MAPK-1 and MAPK-2,
associated with regulation of the growth of many cells (25). In
the context of long-term processes, PKC plays a significant
role in cell differentiation, mobility and metastasis (2, 12).

The anti-proliferative effects of 25(OH)D3 correlate with
the expression of endogenous 1-α-hydroxylase, whose
activity is reduced in cancer cells compared to healthy
prostate cells (5, 26, 27). The discovery of reduced activity
of 1-α-hydroxylase in prostate cancer (PCa) epithelial cells
provided an explanation for the locally reduced production
of 1,25(OH)2D3, which results in the inhibition of cell
differentiation and an increase in cancer invasiveness (27).

Another type of interaction of regulatory pathways caused
by activation of the EGF (epidermal growth factor) receptor
is the induction of other biological processes (apart from

proliferation) in tumour transformation, such as
inflammation, tumour angiogenesis, and infiltration, through
stimulation of cyclooxygenase 2 (COX-2) and production of
prostaglandin PGE2 (28, 29). It has been demonstrated that
calcitriol may also inhibit the activity of cellular growth
stimulators – prostaglandins. It has been shown that
treatment of theprostate cancer cell line LNCaP with
1,25(OH)2D3 limits PGE2 synthesis (through inhibition of
COX-2) and increases its inactivation (by stimulating
prostaglandin dehydrogenase (15-PGDH), which transforms
prostaglandins into ketone derivatives) (29).

Other mechanisms of cell cycle regulation by
1,25(OH)2D3 involve inhibition of mitogenic signals
transmitted by growth factors such as EGF and stimulation
of the pathways of transforming growth factor β (TGF-β)
and insulin-like growth factor-binding proteins (IGF-BP),
e.g. IGF-BP3 (30), as well as the aforementioned reduction
of the expression of c-Myc gene, which plays a significant
role in cell proliferation. In normal cells, the expression of
c-Myc gene is correlated with an increase in the
concentration of the c-Myc protein. This leads to metabolic
disorders and tumour formation. Abnormal oncogene
structure has been observed in many tumours.

Moreover, in cells exposed to calcitriol analogues, a reduction
has been observed in the activity of ornithine decarboxylase, an
enzyme necessary for DNA synthesis, as well as a decrease in
the secretion of IL-6 (interleukin-2) and IL-8 (interleukin-8),
which are known mitogens for keratinocytes (31).

One of the characteristic features of tumour cells is
increased activity of telomerase. The enzyme is active in about
80-90% of all tumours and is responsible for the
reconstruction of telomeres. It is a specialized DNA
polymerase with reverse activity to that of transcriptase, which
synthesises telomeric repetitions de novo (32, 33). The enzyme
is composed of two key sub-units: a sub-unit consisting of an
RNA chain (reverse transcriptase, RT) and the equally
important sub-unit telomerase reverse transcriptase (TERT)
(33-35). TERT has the ability to elongate telomeres in order
to maintain the integrity of chromosomes, and in some sense
regulates cell life span (34). It plays a significant role in
proliferation, differentiation, carcinogenesis and ageing of
cells (35). The RT and TERT sub-units together make up the
enzyme core. Calcitriol and its analogues inhibit the high
telomerase activity seen in human cancer cells by decreasing
TERT mRNA expression. Induction of miR 498 gene by
calcitriol is implicated in the down-regulation of TERT mRNA
in some cancer cells (24).

Nuclear Vitamin D Receptor (nVDR)

Vitamin D initiates or suppresses the transcription of genes
after binding to its receptor, VDR, which belongs to the nuclear
receptor superfamily and acts as a ligand-activated transcription
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factor (1, 5). It is composed of the conserved N-terminal DNA-
binding domain and an α-helical C-terminal ligand-binding
domain. Binding of calcitriol to the ligand-binding domain
causes heterodimerization of VDR with retinoid X receptor
(RXR). This is necessary for binding to a DNA sequence
known as the vitamin D response element (VDrE), located in
the promoter region of the 1,25(OH)2D3 target genes (36, 37).
These include the genes for amphiregulin – an epithelial
growth factor stimulating the development of head and neck,
and breast cancer (15, 38), the cell cycle inhibitor protein p21,
apoptosis regulator protein bcl-2, and p53, a protein
suppressing oncogenes that control cell growth, such as c-fos
(39). Following binding to certain VDrE sequences and
activating proteins, VDR acts as a transcription factor, inducing
cell growth and proliferation as well as apoptosis (5). A
significant discovery was the presence of VDR in cancerous
cells, including breast cancer cells (40), which suggests that
these cells may be susceptible to the effects of vitamin D.
Advanced research is currently underway to introduce calcitriol
and especially its analogues in the treatment of patients with
breast, prostate, colorectal and head and neck cancer, as well
as in combination therapy that is already used for acute
promyelocytic leukaemia (9, 13, 15, 41-45). On the other hand,
subtle allelic variations of the VDR gene located on
chromosome 12 (12q13.1) are relatively common in the
population (46). It has been demonstrated that polymorphisms
in the VDR gene can play a significant role in the formation
of cancers (47-49). Thus far, over 60 different polymorphisms
localized in the promoter region, the region of exons 2-9, and
the 3’UTR region have been detected. These can be single
nucleotide polymorphisms (SNP) or functional polymorphisms,
but also repeats (e.g. BsmI (G/A) (rs1544410), ApaI (G/T)
(rs7975232), TaqI (T/C) (rs731236), Fok1 or Poly (A) in the
3'UTR region) (50). All changes in VDR can affect mRNA
stability, and hence the translation of VDR mRNA. For
example, the GG genotype of the ApaI (G/T) polymorphism
influences the efficacy of chemotherapy in patients with non-
small cell lung cancer (NSCLC). The authors of the study even
suggested that the ApaI polymorphism in the VDR gene may
prove to be a good marker for the use of individualized
chemotherapy for NSCLC (51).

Thus, both normal and mutant VDR receptors are very
important factors in the activity of vitamin D and its
analogues in the process of tumorigenesis. 

Vitamin D – Apoptosis Induction

Another possible pathway of the anti-tumour function of
calcitriol is apoptosis induction, which has been demonstrated
in tumour cells of the prostate, breast and large intestine (22,
52). However, the exact mechanism of this activity has not yet
been identified. During apoptosis, the cell undergoes
biochemical changes involving expression of specific genes

(bax, bcl-2, TRPM-2/clusterin, cathepsin B) as well as
morphological changes (cytoplasm condensation, DNA
fragmentation or the formation of apoptotic bodies) (39, 53).
Vitamin D treatment of colon cancer cells activates the
expression of cystatins, endogenous inhibitors of cysteine
proteases of the cathepsin family (54). Cathepsin B
participates in the carcinogenesis process on many levels of
tumour transformation, invasion and metastasis. Cathepsin B
has been shown to enter into the cell nucleus and activate
apoptosis (55). Most research studies have confirmed that the
activity of cysteine endopeptidases can be measured as marker
of tumour aggressiveness and their inhibitors as markers in
diagnosis and monitoring of cancer therapy (56-58). In
prostate epithelial cells, clusterin expression increases
immediately after castration, reaching its maximum level in
rat prostate cells 3-4 days after the procedure, which is
associated with the beginning of mass cell death. At the same
time, clusterin may be a marker of cell death and an apoptosis
promoter. According to Zhu et al. (59), vitamin D may express
its antitumoral effect by mediating the MEG3/clusterin
signaling pathway. Proteins belonging to the bcl-2 family (B-
cell CLL/lymphoma 2) play the key role in apoptosis
regulation. Despite the similarity in their structure, different
proteins in this family play opposite roles in the regulation of
apoptosis. They may block apoptotic signals or cause an
increase in the permeability of the external mitochondrial
membrane to release of cytochrome c and activate caspases
and cell death (60-62). Moreover, in the early stages of
carcinogenesis, over-expression of protein bcl-2 protects cells
with lethal mutations and contributes to genetic
destabilization, a characteristic of tumours (62). The reduced
efficiency of apoptosis in tumour cells may also be linked with
mutations in the bax gene, one of the main effectors of p53-
induced apoptosis (63). The co-dependency between the
occurrence of TP53 gene mutations in cancers and disordered
balance of the expression of bcl-2-bax is very often observed
(64). Calcitriol has been found to decrease Bcl-2 expression
in breast cancer cell lines (65). Ohnishi et al. have shown that
vitamin D-induced cell-cycle arrest is mediated by inhibition
of several key proteins which regulate the G1/S phase and by
up-regulating TP53 expression (66). 

Vitamin D – Inhibition of Invasiveness 
and Metastasis of Tumours

The colonization of tissues by tumour cells does not seem to
be accidental. Tumour cells show some preferences for
settling in a given organ (67). This probably takes place due
to chemotaxis of tumour cells in connection with the level
of cytokines produced by the cells, due to exceptionally
favourable environmental conditions in the organ or to
selective adhesion of tumour cells into the endothelial cells
of the vessels in the organ. The over-expression of some
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integrins suggests that integrins are the main molecules
involved in selective adhesion (68). In vivo research on
animal models of prostate and bladder tumours has shown
that 1,25(OH)2D3 reduces the invasiveness of tumours (69-
71). Suggested mechanisms of the ‘anti-invasive’ function of
vitamin D include inhibition of metalloproteinase and serine
protease activity and increase E-cadherin expression, as well
as reduction of the expression of integrins a6 and b4. 
E-cadherin belongs to the superfamily of calcium-dependent
adhesion molecules. Changes in the expression and
regulation of these proteins are strictly linked to tumour
invasiveness. The loss of E-cadherin activity has been
correlated with the clinical level of prostate cancer
malignancy and the capacity to metastasize, as well as with
poor overall survival of patients (72-74).

Vitamin D – Angiogenesis Inhibition

Another anti-tumour mechanism that has been described for
1,25(OH)2D3 is the inhibition of angiogenesis, e.g. in prostate
cancer, both directly through the impact of tumour endothelial
cells and indirectly through a reduction in the amount of
COX-2-generated prostaglandin E2 (PGE2) (24, 31). One of
the factors which induce angiogenesis is IL-8. The main
functions of IL-8 are chemotactic attraction of neutrophils to
the site of inflammation and stimulation of their bactericidal
properties. Moreover, IL-8 plays a crucial role as an agent
stimulating the formation of new blood vessels. In prostate
cancer cells, 1,25(OH)2D3 has been shown to inhibit the
activation of IL-8 gene transcription, most likely through
interaction with the p65 subunit of nuclear factor kB (NF-kB).
Other mechanisms of action of calcitriol through VDR include
suppression of the expression of vascular endothelial growth
factor (VEGF), angiopoietin 1 and platelet-derived growth
factor (PDGF) and transcriptional repression of hypoxia-
inducible factor 1 alpha (HIF1α) (75).

It is also worth noting that the presence of a physiological
concentration of calcitriol is essential for a normal 
T lymphocyte-dependent immune response, which has been
shown to depend on the presence of VDR (increased risk of
infectious diseases with vitamin D insufficiency) (76).

Inhibition of Hedgehog (Hh) 
Signaling by Vitamin D

The Hh signaling begins with the attachment of the Hh
peptide to the Patched (Ptch) receptor. The free form of Ptch
inhibits Smoothened (Smo) protein. However, after Hh is
attached, activation of Smo occurs, which induces the
transport of GLI proteins to the cell nucleus followed by
attachment to DNA and induction of transcription of target
genes (77, 78). Deregulation of Hh signaling can lead both
to stimulation and progression of cancer (79, 80). Four

different types of human cancer, related to the Hh pathway,
have been described: basal cell carcinoma, medulloblastoma,
rhabdomyosarcoma and meningiomas (81). These can occur
via mutations in the genes encoding components of the
pathway (e.g., PTH1, CLI1, HIP or SFRP1) or by excess
production of the Hh ligand by the tumor or stromal cells
(80, 81). The drugs blocking the Hh pathway are relatively
new in oncological medicine (82, 83). The first human
inhibitor of Hh signaling, GDC- 0449, is now in clinical
trials for at least 8 human cancers, and several other Hh
inhibitors are in varying stages of clinical development. As
early as in 2006, the inhibition of Hh signaling by vitamin
D in vitro was described (84). The effect of Hh signaling on
the growth of basal cell carcinoma (BCC) is particularly well
documented (82, 85). Tang et al. (82) claimed that Vitamin
D inhibits both Hh proliferation and signaling, on the basis
of mRNA expression of the Hh GLI1 target gene. Moreover,
it was emphasized that this effect was independent of the
VDR receptor. Abert et al. (86) have shown that in Ptch
mutant mice with basal cell carcinoma and in BCC cell lines,
both Vitamin D and its active metabolite calcitriol
(1,25(OH)2D3) exhibit an anticancer effect, mainly, by
inhibiting Hh signaling. 

Interaction of p53 and VDR Signaling

The p53 protein protects cells against changes in the genome
due to DNA damage by inducing apoptosis, halting cell cycle
progression or cellular aging (87). This protein undergoes
inactivation in over 50% of cancer cases because of increased
proteasomal degradation, or the presence of inactivating
checkpoint mutations in its gene (88). This results, among other,
in the formation of a transcriptionally inactive protein,
hyperproduction of the mutant p53 protein or disturbance of p53
regulation by the chief negative regulators in the cell (by way
of overexpression of binding factors – MDM2 and MDM4
(murine double minute 2 and 4) and the inhibition of
transcription activity of the p53 protein (mainly MDM4) (89-
92). Mutated p53 not only loses its tumor suppressor activity,
but can also acquire oncogenic functions which are defined as
gain-of-function (GOF) (93, 94). The introduction of the TP53
gene allele with null mutation to the stem cells of mice by way
of homologous recombination, resulted in a spontaneous
development of cancer in 75% of mice with the p53 phenotype
(–/–) before they were 6 months old (95). On the other hand,
the introduction of the gene encoding the wild type p53 (wtp53)
to the cell line of mouse myeloid leukemia, devoid of the active
p53 protein, resulted in a drastic reduction of cell viability and
of apoptosis markers including chromatin condensation, nucleus
fragmentation and DNA fragmentation (96).

Thus, restoration of the tumor suppressor function of the
p53 protein in cancer cells could lead to cancer remission
(97). Attempts have been made to design non-protein low-
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molecular mass inhibitors of MDM2-p53 interaction, and
also of MDM4-p53, that will reactivate p53 and will have
potential of being anticancer drugs (98), such as for example
actinomycin D (99).

Vitamin D and its analogs are also considered to be
potential antineoplastic agents. The active form of vitamin
D, 1,25(OH)2D3, is capable of initiating or terminating gene
transcription after binding to VDR which belongs to the
nuclear receptor superfamily and functions of a ligand-
activated transcription factor. Maruyama et al. (100) have
confirmed that expression of the VDR gene is directly
regulated by p53 protein. Overexpression of VDR increased
the response to vitamin D treatment and inhibited the growth
of colon cancer. The VDR gene is a transcription target of
wtp53 and also of p63 and p73 (100-103). It is particularly
interesting, that VDR is increased in several types of cancer,
including breast and ovarian cancer (104, 105). A mutated
p53 can cause deregulation of the anticancer activity of the
VDR pathway. Stambolsky et al. (106) have described the
mechanism of mutp53 GOF (gain-of-function), based on the
interaction between p53 and VDR. It was shown that VDR
and mutp53 (and also wtp53) interact with each other and
this interaction increases as a result of vitamin D3
supplementation (106). The existence of an interaction
between mutp53 and the regulation of transcription by
calcitriol is probably due to the fact that mutp53 is bound to
chromosome regions containing VDRE elements, probably
via binding to VDR. Moreover, mutp53 increases nuclear
accumulation of VDR which in some cases correlates with
tumor stage (107, 108). In order to inhibit apoptosis, high
endogenous levels of mutp53 in cancer cells probably
cooperate with vitamin D, which is additionally enhanced by
supplementation. The mutp53-dependent antiapoptotic
activity of vitamin D has also been observed in breast cancer
MDA-MB-231 and ovarian cancer OVCAR3 cell lines (106,
109). Moreover, increased VDR nuclear accumulation due to
the activity of mutp53 can occur even without the supply of
calcitriol, indicating that the mutant p53 protein changes the
conformation of the receptor in a way that imitates the
activity of vitamin D. It has been emphasized that the
increased nuclear accumulation of VDR is probably not the
only explanation of the effect of mutp53 (106). In the case
of transactivation, VDR recruits mutp53 to VDRE in target
genes, whereas mutp53 increases VDR-dependent
transcription, thus stimulating the recruitment of additional
transcription co-activators such as p300 (p300/cyclic AMP-
response-element binding protein). The conversion of the
VDR pathway from proapoptotic to antiapoptotic can occur
due to a mutation in p53 GOF, at least in the cell lines which
are protected by vitamin D. Undoubtedly, this discovery
should be taken into account while deciding to apply
therapies with vitamin D analogs for cancer. This means that
apart from its well-documented proapoptotic activity, vitamin

D can also have an antiapoptotic effect, and thus the VDR
pathway can lead either to the patient’s death or survival,
depending on the presence of a TP53 mutation (106).

Vitamin D – Interaction of Photocarcinogenesis

Over 90% of vitamin D in the human body is produced in the
skin in response to sun exposure. Human epithelial cells
(keratinocytes) possess a complete system for the synthesis and
metabolism of vitamin D. They have receptors for vitamin D
(VDR) which are responsible for inducing gene expression.
Both 25-hydroxylation and 1-hydroxylation lead to the
formation of a biologically active form of vitamin D known as
calcitriol (1,25(OH)2D3) and 24-hydroxylation leads to
catabolism of vitamin D. Moreover, fibroblasts of the dermis
possess a mechanism that allows the formation of 25(OH)D3,
yet they do not have 1-hydroxylase and hence are unable to
produce calcitriol (110). The application of vitamin D in
dermatology is mainly due to its immunomodulatory
properties, as well as its effect on the regulation of cell
proliferation and differentiation. Vitamin D is formed in the
epidermis and, together with calcium, it participates in the
process of regeneration of the epidermal barrier (which is
important for the treatment of various skin disorders such as
psoriasis, photodermatoses, xeroderma pigmentosum and
cancers) (111). Unfortunately, the increased incidence of skin
cancers is largely the effect of increased exposure to ultraviolet
radiation; UVB (which penetrates through the epidermis) and
UVA (which penetrates into the dermis). The effects of
excessive UV exposure include erythema, sunburns and
dysfunction of Langerhans cells which are a part of the
immune system of the skin. On the molecular level, exposure
of DNA molecules to UV radiation leads to their damage,
which in the absence of efficient repair systems can result in
mutations and subsequently the initiation of neoplastic
processes (112, 113). The potential anticancer activity of
calcitriol in the case of malignant melanoma have been
examined in many experimental and epidemiological studies,
but contrary results have also been obtained (114-120).
Sunburns in childhood (before the age of 15) are the most
significant risk factor, regardless of the latitude of the
children’s locations (120). The systemic or local administration
of 1,25(OH)2D3 immediately after excessive exposure to UV
radiation was found to reduce sunburns in both humans and
mice (121, 122). Besides, the presence of at least one actinic
keratosis lesion also increases the risk of melanoma
development (123). However, there is no unequivalent answer
to the question concerning the relationship between the risk of
melanoma and taking vitamin D either in the diet or in the form
of supplements (124). Similarly, no relationship was found
between the risk of developing melanoma and the
concentration of vitamin D in serum (125). An attempt has
been made to examine the effect of vitamin D used locally on
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the skin after exposure to UV radiation. It was found that tumor
development was inhibited due to a strengthening of the repair
mechanisms (126, 127). Makarova et al. (128) found that
vitamin D synthetized in the skin by UVR protects the
organism against oncogenic activity by inhibiting Hh signaling,
whereas vitamin D taken in the diet does not exhibit such a
protective mechanism, probably due to the rapid hydroxylation
reaction accompanying oral intake (129). 

UV radiation induces a number of changes in the skin by
generating reactive oxygen species (ROS) and nitric oxide
(NO) which can provoke DNA oxidative damage and lipid
peroxidation. Promutagenic pyrimidine dimers and 
8-hydroxy-2’deoxyguanosine are the major forms of DNA
damage produced directly by UV radiation (122, 130-132).
Vitamin D analogs were found to decrease the levels of
thymine dimers which are formed after UV exposure (133)
and the frequency of occurrence of oxidative and nitration
DNA damage by reducing the production of NO and other
toxic reactive forms of nitrogen (127, 133, 134). A decrease
in DNA damage after exposure to UV radiation in the
presence of 1,25(OH)2D3 has been observed in keratinocytes
(127, 133), fibroblasts (135) and melanocytes (136). The
protective activity of vitamin D against the sun’s damaging
effects to the skin also includes increase in the levels of p53
protein and metallothionein in the presence of calcitriol (127,
133, 134). A multifactorial effect of vitamin D to skin damage
due to UV exposure is also related to the immune functions
of the skin (among other things by its influence on maturation
of the Langerhans cells presenting the antigen, NF-ĸB, T
lymphocytes, IL-10, monocytes, macrophages) (122). 

It seems that in the case of malignant melanoma the
protective activity of sunrays through the synthesis of
vitamin D is less important than its carcinogenic activity
(regardless of the amount of time spent in the sun) (137,
138). The relationship between melanoma and sun radiation
is very complicated and involves both the slow genome
pathways (via the VDR receptor) and the rapid non-genome
responses. Further investigations are required in this respect
that would take into account not only the promising aspects
of vitamin D anticancer effect, but its “dark” side as well. 

Conclusion

On the basis of current data, it cannot be stated conclusively
whether intake of vitamin D may offer protection against
cancer. The presence of the VDR throughout the body and
the effect of vitamin D on the cell cycle, apoptosis,
angiogenesis, Hh signaling, interaction of p53 and
photocarcinogenesis unquestionably suggest such a potential.
However, further research is required, first to fully elucidate
the mechanisms of action of this vitamin, and secondly to
determine a specific dose and time of intake necessary to
achieve an anticancer effect. 
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