
Abstract. The focus of this review is to describe the state-of-
art in the development of innovative drug delivery systems for
phthalocyanines as photosensitizers for photodynamic therapy
(PDT). PDT is a medical treatment combining photosensitizers
(PSs) activated by visible light of a specific wavelength to
selectively destroy targeted cells, tumor tissues and its
surrounding vasculature. In the last decades, PDT has been
under intense investigation, first as a promising alternative
approach for improved cancer treatment, later against
microbial infection and nowadays, mainly in aesthetic medicine,
against age-related degeneration. The success of PDT is
restricted because of difficulties with administration and skin
permeation of PSs. As PDT importance raises, there is high
interest for advanced formulations and delivery systems (DDS)
for PS, especially formulations based on nanotechnology.
Accordingly, this review deals with the innovations pertaining
to DDS for PDT as disclosed in recent patents and literature.

The photodynamic therapy (PDT) was originally developed as
a tumor therapy with improved selectivity towards diseased
tissues in comparison to conventional cancer treatments
(surgery, chemo- or radiotherapy). In addition to its primary use
to destroy tumors without causing damage to surrounding
healthy tissue, PDT has been successfully employed for the
photosterilization of the tumor bed after surgical resection of a
large neoplasm to support surgical treatment (1-3). Although
PDT has multiple clinical applications, it is mainly used in
oncology for the treatment of various types of solid tumors. The

benefits of treating superficial oncologic lesions (tumor
thickness <2-3 mm) using PDT are the low level of
invasiveness and the excellent cosmetic results after treatment
(4, 5). In dermatology, topical PDT is effective for
dermatooncological or precancerous skin conditions like
squamous cell carcinoma (6, 7) and superficial basal cell
carcinoma (8-10), actinic keratosis (11, 12), Bowen’s disease
(4, 5, 13-15), mycosis fungoides (an indolent subtype of
cutaneous T cell lymphoma) (9, 16-19), Kaposi’s sarcoma,
extramammary Paget’s disease, and cutaneous B cell lymphoma
(20) as well as for other proliferative disorders, such as vascular
malformations (21) or keloid scars (22-24). In aesthetic
dermatology PDT is extensively used for the treatment of
inflammatory dermatoses that have a high psychological impact,
like localized scleroderma (25, 26), acne vulgaris (27-29),
rosacea (30, 31) and granuloma annulare (32-34), as well as for
aesthetic indications like photo aged skin or sebaceous gland
hyperplasia (4, 35, 36). PDT is useful for the treatment of
various viral diseases such as warts (human papilomavirus) (37-
39) or viral skin lesions (molluscum contagiosum and herpes
simplex) (4, 5, 40), various mycotic diseases (41-43) or parasite
diseases such as leishmaniasis (44-46) or bovine trichomoniasis
(47). Currently, PDT is successfully used in ophthalmology for
the treatment of age-related macular degeneration (48, 49).

PDT is used mainly for dermatology, however, light
sources such as lasers can be coupled with fibre optic
systems allowing acces to inaccessible locations, such as
urinary bladder, digestive tract, brain or deep-seated tumors
(3). PDT can be used in association with other therapeutic
techniques such as surgery or chemotherapy. In the case of
surgery for tumour resection, PDT can be used to help to
destroy any remaining cancer cells after surgery. In the case
of chemotherapy, several trials have demonstrated synergistic
effects of the combination of PDT with low doses of
chemotherapeutic drugs. The combination destroys cancer
cells more efficiently and also reduces the side-effects of
chemotherapy, due to the lower doses of chemotherapeutic
drugs required to obtain the desired effect (3, 50, 51).
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Photodynamic Therapy (PDT)

PDT uses visible light of a specific wavelength, for killing
cells and tissues though activation of photosensitizers (PSs),
that in the presence of molecular oxygen, generate reactive
oxygen species (ROS) leading to oxidative cell damage and
cell death (52, 53). Each component is harmless by itself,
but, in combination they induce severe toxicity towards
targeted cells and tissues. The mechanism of action of PDT
is generally nonspecific, but there are two mechanisms
leading to greater selectivity towards the selected targets.
First, enhanced permeability and retention (EPR) effect
causing preferential uptake and accumulation of PSs in
rapidly dividing cells and diseased tissues. Second, restricted
illumination to specific region/volume of tissue. Only cells
that are exposed simultaneously to PS, light and oxygen are
subjected to the cytotoxic ROS produced during PDT.
Additionally, healthy cells are much more resistant against
oxidative stress than cancerous cells. Combination of all the
above allows destruction of tumor tissue while sparing
surrounding healthy cells from damage. PDT usually
damages surrounding blood vessels and thus prevents tumor
from receiving nutrients, and may trigger an immune
response towards cancer cells as well.

Basic Principles of PDT

The mechanism of PDT has been discussed in detail
elsewhere (54-56). Briefly, when the drug (PS or its
metabolic precursor) is administered (and metabolized to
form PS in the case of the precursor), PS is activated by
exposing the tissue that has accumulated PS to the light of a
specific wavelength, usually in the maximum absorption
band of the dye (1). The PS is excited from its ground state
(54) (singlet state, no unpaired electron spins (57, 58)) and
reaches a short-lived excited singlet state (54, 55). In a time-
scale of nanoseconds, PS releases its excess of energy by
emitting a photon (fluorescence) or by internal conversion of
energy (heat) and decay back to the ground state. Another
mechanism involves the conversion to the excited triplet
state via intersystem crossing including inversion of the spin
of one electron (59) which has longer lifetime due to higher
stability than the excited singlet state. Decay from the
excited triplet state to the ground state is possible by emitting
a photon (phosphorescence) or by internal conversion of
energy (heat) or by transfer of energy to surrounding
molecules. Interactions with the surroundings can follow two
pathways named Type I and Type II reactions (Figure 1).

In Type I, the PS in its excited triplet state interacts with
an organic cellular substrate transferring or acquiring one
electron/hydrogen via the radical mechanism. It generates
free radicals and radical ions and thus initiates chain
reactions. After interaction with oxygen, PS can produce

highly reactive oxygen species (ROS), such as the
superoxide anion O2–, hydrogen peroxide H2O2, peroxide
anions and highly reactive hydroxyl radical OH•, which then
attack cellular targets and damage various cellular
components (56, 60-62). However, oxygen is not necessarily
required because original free radicals can cause cellular
damage directly. 

In Type II, the PS in its excited triplet state transfers its
energy directly to molecular oxygen in its triplet ground state
through energy transfer and yields highly reactive and
cytotoxic singlet oxygen (63). This phenomenon is called
triplet–triplet annihilation. Singlet oxygen has a short
lifetime in a time-scale of microseconds, but a sufficient
concentration of highly cytotoxic singlet oxygen induces
irreversible cell damage (54, 55).

Both types of reactions take place at the same time and
balance between them depends on the PS itself, however, it
is considered that the prevailing mechanism during PDT is
a Type II process (54, 56, 60-62, 64-66). After generating of
cytotoxic ROS the molecule of PS can be destroyed by
photobleaching due to oxidation (67) or can return to its
ground state without chemical alteration and prepared to
repeat excitation-energy transfer process multiple times (1,
59, 68-70).

Mechanism of Action on Cells

Increased levels of ROS exert their affects only in a small
area around the region where they were generated, reported
radius of action ranging within a 20-200 nanometers (2, 3,
71, 72), and ultimately causes cell death via necrosis,
apoptosis or autophagy (73-76). The predominant
mechanism depends on PS and light dose, cell type, and
subcellular localization (site where ROS is generated
determines which subcellular target is attacked due to radii
of action in the order of dozens nanometres compared to
diameters of human cells ranging from 10 to 100 μm) (2,
77). PS usually act in the plasma membrane, mitochondria,
endoplasmic reticulum, and lysosomes (3, 78-80). Produced
ROS attack mainly DNA, protein thiol groups, and
membrane lipids (3, 81).

Mechanism of Action on Tumor Tissues

The mechanisms of cell death caused by PDT are necrosis
or apoptosis. The mechanism of tissue damage is more
complex and depends on applied PS agent and treatment
conditions. In general, molecules of certain sizes, especially
lipophilic macromolecular drugs, as most PS agents, tend to
selectively accumulate in tumor tissues. As tumor cells grow
quickly, they stimulate the production of new blood vessels.
These are usually abnormal in form and architecture, and
they are formed by poorly aligned defective endothelial cells.
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This leads to leaky vasculature. Other particular
characteristics of tumors such as lack of effective lymphatic
drainage, expression of specific enzymes and receptors, and
pH variation play also role. All of these factors lead to
accumulation of PS in tumor tissues and this phenomenon is
called enhanced permeability and retention (EPR) effect.
Disproportionately high numbers of low-density lipoprotein
(LDL) receptors of tumour cell membranes and the fact that
lipophilic PS agents are transported in the bloodstream
bound to lipoproteins (such as LDLs) could enhance the
accumulation of PS at close proximity to tumour cells (59,
82-84). PDT-induced changes in the vasculature may include
vascular stasis, vascular leakage, or vessel collapse leading
to ischaemic necrosis (3, 85-87).

Light Sources

PS is activated by exposing to the light of a specific
wavelength, usually in the maximum absorption band of the
PS (1). The stronger light absorption of PS at used
wavelengths the higher quantum yields of excited states and
potentially higher yields of ROS. However, for in vivo
application PS requires a maximum of optical absorption at
wavelengths higher than 650 nm due to strong absorption of
endogenous pigments (such as hemoglobin, melanin).
Absorption of endogenous pigments results in limited

penetration depth (usually 1-3 mm) of light of wavelengths
in the region of 400-600 nm (3, 87, 88). To enhance
penetration into tissue to access deep-seated tumors, it is
necessary to use high-energy light sources (lasers) that can
easily burn surface tissues. With increasing wavelength,
penetration depth increases as well. In the red visible region
(650-780 nm) and near-infrared region (>780 nm) light of
low intensity can be used to achieve depths of several
centimeters without healthy tissue damage (3, 87). Energy of
singlet oxygen corresponds to 1,270 nm, however,
compounds able to absorb in the region higher than 800 nm
are in fact extremely rare. For such high absorption
wavelengths, it is necessary to conjugate dozens of aromatic
bonds and/or incorporate some uncommon (bio-
uncompatible) metal ions into the structure of the compound.
Such compounds suffer of low solubility/bioavailability
(unpolar structure) and toxicity (metal ions). Moreover light
of these wavelengths tends to highly scatter in tissue (3).
Practically, only the red region of the visible spectrum (650-
780 nm) is available and is called “therapeutic transparency
window” for PDT.

Porphyrin-based structures with extended aromatic
systems such as phthalocyanines, naphthalocyanines, and
benzoporphyrins have high absorption coefficients in the
therapeutic transparency window and yield high levels of
ROS. These, in combination with selective accumulation in
tumor tissue (EPR effect), are the main advantages of these
second-generation PSs.

Optionally lasers can be coupled with fiber optic systems
allowing access to inaccessible locations, such as urinary
bladder, digestive tract, brain or deep-seated tumors (3).

Photosensitizers 

Although the first utilization of phototherapy for the
treatment of diseases can be traced back over 4,000 years to
the ancient Egyptians (89), contemporary PDT came first in
the early twentieth century in the form of the first
photosensitiser haematoporphyrin (Hp) which was isolated
from blood and lately in the form of the purified
haematoporphyrin derivative (HpD) used under the brand
name Photofrin. The main disadvantages of this first-
generation photosensitisers were weak absorption in the
therapeutic transparency window and prolonged patient
photosensitivity. This led to the development of improved
PSs designed to minimize the drawbacks of the first
generation PSs (90, 91).

Most of the second-generation PSs are porphyrin-like
molecules (such as chlorins and bacteriochlorins), expanded
porphyrins (such as texaphyrins), and structures with
aromates fused to pyrrole rings (such as benzoporphyrins,
phthalocyanines, and naphthalocyanines) or metabolic
precursors of porphyrins (such as 5-aminolevulinic acid and
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its esters). Although there exist numerous dyes and pigments
displaying photosensitivity and effectively generate ROS, the
PSs that are mostly used are only cyclic tetrapyrroles or
structural derivatives of this chromophore. Cyclic
tetrapyrrolic derivatives have little or no toxicity in the
absence of light because of an inherent similarity to
endogenous structures naturally occurring in human body.
These compounds also display high absorption coefficients
in the region of therapeutic transparency window, high yields
in production of ROS, short serum half-life and selective
tissue accumulation due to EPR effect (3, 92).

5-aminolevulinic acid (ALA) is not a photosensitizer by
itself but is naturally occurring precursor in the biosynthetic
pathway to photosensitive protoporphyrin IX (PpIX) (Figure
2). ALA is an endogenous metabolite that is synthesized
usually in mitochondria from succinate-CoA and glycine.
Conjugation of eight ALA molecules results of creation of
PpIX which is subsequently metabolised and finally it results
in formation of haem. Conversion of PpIX to its subsequent
substrates requires activity of the enzyme ferrochelatase and
this is the limiting factor concerning the rate of metabolism
of ALA to haem. In case of external administration, the
conversion of ALA to PpIX is quite fast but PpIX cannot be
quickly converted by ferrochelatase to the final product haem
and thus, PpIX accumulates in cells. Because PpIX is a
strong photosensibilizer, this metabolic path has been
frequently used in PDT. Kinetics of skin penetration and
localisation can be modulated by using esters of ALA (such
as methylester, hexylester or benzylester) which hydrolyze
to form ALA and PpIX (93). This compound shows low
toxicity and is rapidly cleared from the body by the existing
clearance mechanism. In addition, PpIX-induced
fluorescence can be visualized under blue light and can be
employed in diagnosis (3, 94-98).

Porphyrins (Figure 3) are naturally-occurring intensely
purple compounds with a porphine skeleton. Porphine frame
consists of four pyrrolic sub-units linked on opposing sides
through methine bridges resulting conjugated planar
macrocycle. If substituted, compounds are known as
porphyrins. The inner core can be deprotonated to form
tetradentate dianionic chelators which can readily form
complexes with most metal cations. Porphyrins display an
intense absorption at around 400 nm (Soret band) followed
by four weaker absorptions referred to as the Q bands (450-
700 nm). Intensity of absorption in the region of the
therapeutic transparency window can be modulated by
exoskeleton substitution or by complexation with metal
ligands into the centre of the macrocycle, however all
porphyrins suffer relatively low extinction coefficients. 

Porphyrins with reduced one exocyclic double bond are
chlorins and after reduction of another exocyclic double
bond bacteriochlorins are formed. Reduced bonds decrease
the symmetry of the conjugated macrocycle which causes

red-shift (650-680 nm for chlorins and 730-800 nm for
bacteriochlorins) and 10-fold stronger absorption in the
therapeutic transparency window for chlorins and 40-fold for
bacteriochlorins. It is worth to mention that synthesis of
them is difficult. Nowadays there are only representatives of
chlorines (e.g. temoporfin under brand name Foscan,
verteporfin under Visudyne and tin complex of etiopurpurin
named Purlytin) commercially available or under clinical
evaluation (91).

Expanded porphyrins with penta-aza core, called
texaphyrins or motexafins, display strong absorption in the
730-770 nm region. These are usually in the form of metal
complex with lutetium (motexafin lutetium known as
texaphyrin, marketedas Lutex, Lutrin or Antrin) or
gadolinium (motexafin gadolinium or gadolinium texaphyrin,
marketed as Xcytrin) as potential radiosensitisers.

Porphyrin-like structures with aromates fused to pyrrole
rings are mainly benzoporphyrins, phthalocyanines (PCs),
and naphthalocyanines (NPCs) (Figure 3). PCs are synthetic
macromolecules related to tetra-aza porphyrins
(porphyrazines) with fused benzene ring to each of four
pyrrole subunits, which are linked by four nitrogen atoms
(like porphyrazines macrocycle) instead of four bridging
carbon atoms in porphyrin macrocycle. NPCs are extended
PC derivatives with naphthalene rings fused to pyrrole
subunits instead of benzene rings. These modifications lead
to highly conjugated skeleton of PCs and NPCs and
subsequently to a red-shift (680-780 nm for PCs and 740-
780 nm for NPCs) and very high extinction coefficients
(significantly higher with respect to all PSs described above).
Since PCs and NPCs absorb long-wavelength light strongly,
they can be used in small doses. PCs and NPCs are usually
prepared in the form of complexes with metal cations co-
ordinated to the centre of macrocycle (Figure 4). This is due
to the fact that during synthesis transition, metal cation helps
to close the ring to easily form a macrocycle. The
photophysical properties of PCs and NPCs are strongly
influenced by the presence and nature of the central metal
ion. Co-ordination of diamagnetic transition metal ions (such
as zinc, aluminium, and gallium) usually results to metallo-
phthalocyanines (MPCs) with high singlet oxygen quantum
yields (99-105).

Strong absorption in the near infrared (NIR) region makes
NPCs candidates for highly pigmented tumours, including
melanomas, however, problems associated with lower
stability (decomposition in the presence of light and oxygen)
and a tendency to form photoinactive aggregates in solution
prohibit their clinical use. Contrary, PCs are chemically
stable, resistant to chemical and photochemical degradation
and easy to prepare (1). Nowadays only members of MPCs
family are on the list of drugs in clinical trials (a sulphonated
aluminum PC derivative named Photosense, a liposomal
formulation of zinc phthalocyanine CGP55847, and silicon
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complex of PC known as PC4) but not PCs. General
tendency of MPCs to aggregate in solution resulting in
decrease of their bioavailability and photochemical activity
can be overcome (minimized) using appropriate chemical
modifications (sulphonated MPCs such as Photosense) or
drug formulations (liposomal formulation of CGP55847).

Our interest and scope of this review is focused on the
class of PCs and MPCs, their formulations and advanced
drug delivery systems (DDSs).

Formulations and DDS of PCs and MPCs

PCs are composed of four isoindole units linked by nitrogen
atoms forming a large planar aromatic system. They have the
ability to form stable chelates with about sixty metal and
metalloid ions inserted into central ring replacing two
hydrogens of PC. The properties of these MPCs vary
according to the nature of central ion and thus selection of
central ion and synthetic modifications offer numerous
options to control their physical properties. Closed shell
diamagnetic PCs have higher yields and longer lifetimes of
triplet states (such as Zn2+, Al3+, Ga3+) in comparison to
paramagnetic PCs and therefore, are more appropriate for
PDT (99). The type of chelated central ion influences tumor
retention as well. Some of the central ions are used for
specific treatment such as copper and uranyl (brain tumor
accumulation) or radioactive Technecium-99 (Tc-99) MPCs
(1, 106-110).

Delocalization of the π-electrons gives them their
characteristic intensive blue, cyan or greenish color. These
metalocomplexes are valuable as colorants in ink jet printing
(CI Pigment Blue 15), laser printing (titanyloxy-PC) (111,
112), color filters for LCD screens (111, 113), in catalysis,
organic photovoltaic cells, as semiconductors, optical data
storage materials and rewritable optical media (CD-RW) (87,
103).

Unsubstituted PCs and their metalocomplexes suffer poor
solubility in water and thus introduction of various peripheral
(macrocycle) and axial (coordination to central metal ion)
substitutions have been applied to alter their properties, mainly
to increase their solubility, and consequently
hydrophilicity/lipophilicity (1, 114-118). Nevertheless, these
PCs tend to dimerize and aggregate in aqueous media and thus
lose their photoactivity in solution (only monomers are
photoactive). If successfully administrated, PCs and MPCs
bind to proteins and membranes and thus result in a complex
photophysical behavior in the biological system (1). The
advantage of solubilization through appropriate substitution
allows direct biological administration without requiring an
additional vehicle. In biological systems, PCs are diluted in
the blood stream where they tend to disaggregate and bind to
transport proteins (such as serum albumin) or lipoproteins
(such as LDLs). Albumin has the ability to non-covalently
bind molecules, not only to internal cavities, but also to the
outer surface (119, 120) and thus albumin has physiological
significance in the modulation of the activity of bounded
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molecules and transport. Albumin delivers PCs to target tissue
where they are absorbed using EPR effect (107). The high
number of LDL receptors on tumour cell membranes enhance
delivery efficacy to tumor tissue followed by the EPR effect
(59, 82-84). Various MPCs non-covalently bound to albumin
(121, 122) and LDL (122, 123) have been prepared. When one
of these is administrated, redistribution of MPCs between
albumin and LDL is expected. Covalent binding to albumin
was described as well (124). 

Typical peripheral substitutions leading to products with
increased solubility and reduced tendency to aggregate are
sulfonation, phosphonation (103, 125), glycosylation (68),
carboxylation, or addition of other soluble substituents such
as glucose, quarternary amino, hydroxyl or nitro groups to the
periphery of macrocycle (1, 126). Sulfonation using fuming
sulfuric acid leads to a mixture of many differently sulfonated
PCs. The degree of sulfonation is inversely proportional to
the degree of hydrophobicity and photodynamic activity of
closed shell diamagnetic PCs (110, 127-131). Differently
sulfonated aluminum complexes of PCs exhibit different
subcellular localization (mono- and di- in cytoplasm while tri-
and tetra-sulfonated in lysosomes) (132).

Axial substitution of central ion generally decrease
tendency to aggregate due to sterical hindrance and also the
nature of substitution modulates solubility and other
properties. Suitable ions for this substitution are Al3+ with one
or Si4+ and Ge4+, with two coordination sites. Note that
opposite way unsubstituted MPCs with central ions such as
silicon or iron tend to bind through oxo-bridges. Typical
organic substituents are soluble polymers such as
poly(ethylene glycol) or poly(vinyl alcohol). Shorter polymers
tend to decrease the plasma half-life, but polymers with longer
chains significantly prolong plasma half-life in comparison to
unsubstituted metalophthalocyanine (133, 134).

Another option to increase solubility and bioavailability
of hydrophobic PCs and their derivatives is their formulation
using various Drug delivery systems. DDS can in principle
provide enhanced efficacy and/or reduced toxicity of PS
agents, deliver them to targeted tissues and allow their direct
injection into the bloodstream. The most common and one
of the simplest formulations is Cremophor oil emulsion and
microemulsion. Cremophor formulations have been used for
unsubstituted MPCs and MPCs with peripheral (fluorinated,
hydroxylated) or axial substitutions (99). 

More sofisticated colloidal carriers are micelles and
liposomes. By chemical composition, liposomes are
microscopic bilayer phospholipid vesicles similar to natural cell
membranes separating an aqueous internal compartment from
the bulk aqueous phase. When phospholipids dispersed in
aqueous media unilamellar or multilamellar liposomes are
spontaneously formed. Aqueous environment is an ideal
medium for the existence of liposomes, rather than for
microemulsions. Long circulating macromolecular carriers
such as liposomes can exploit the EPR effect for preferential
extravasation from tumor vessels (135). Their simple
archetypal structures, facile preparation, controllable sizes and
appropriate retention of PS incorporated into membranes
explains why they are still popular as drug carriers. Examples
of their utilization for MPCs include dipalmitoylphospha-
ditylcholine (DPPC), dipalmitoylphosphaditylglycerole
(DPPG), 1-palmitoyl-2-oleoylphosphatidylcholine (POPC),
1,2-dioleoylphosphatidylserine (OOPS), DPPC/DPPG, DPPC/
cholesterol and egg-yolk lecithin liposomes (136-143).

Basic liposomal DDS provide passive targeting only and
suffer from undesirable interactions with plasma proteins and
cell membranes. Thus, liposome constructs featuring direct
molecular targeting of cancer cells via antibody-mediated or
the ligand-mediated interactions have been developed. This
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represents an integration of biological components capable of
tumor recognition with delivery technologies (135, 144, 145).
The immunoliposome approach, in which monoclonal antibody
(mAb) fragments are conjugated to liposomes, offers greater
capacity of liposomes to load thousands of PSs in contrast to
PS immunoconjugates (limited number of PSs linked to mAb)
(135). A similar strategy for molecularly targeted drug delivery
uses tumor-targeting peptides. Though direct conjugation of
MPCs to tumor-targeting peptides has been described (62,
146), incorporation into liposomes is widely used (142, 143,
147-150), and the immunoliposome approach has been used in
the formulation of many other drugs, not many PCs or MPCs
have been formulated this way yet (151). Another approach
used for topical applications to improve delivery of liposomes
into viable dermis and epidermis are stratum corneum lipid
liposomes (SCLLs). SCLLs composed of stratum corneum
lipids use similar mechanisms with human cell to enhance
interaction with skin (62, 152).

Micelles are closed monolayered vesicles with a
hydrophobic core and a polar surface, typically formed by
lipids with a fatty acid core or by polymers. An advantage
of polymer micelles is their tunability allowing them to
covalently bind targeting moieties, and to prepare
thermoresponsive and/or hydrolytically degradable micelles
to form advanced DDS (153, 154).

Polymer nanoparticles (PNPs), compared to liposomes, have
a higher stability and their adjustable size and uniformity
prevents recognition by macrophages and extends their
circulation time in the bloodstream. While PSs are protected
against enzymatic degradation, PNPs are able to penetrate into
cells and allow controlled release of PSs (62, 155-158). Their
properties could be tuned by the composition of polymer and
by coating. Mostly used biocompatible biodegradable polymers
are polylactide (PLA), polyglycolide (PGA), their copolymer
poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone
(PCL), poly(ethylene glycol) (PEG), chitosan, gelatin, 
β-glucan, as well as crosslinked polymers such as dioctyl
sulfosuccinate with alginate (159) or alginate with cholesteryl
residues (160). Mostly used nonbiodegradable PNPs are made
of polyacrylamide (PAA), N-(2-hydroxypropyl)methacrylamide
(HPMA) or polyalkylcyanoacrylates (PAC) polymers and
copolymers (62, 161, 162). The advantages of PAA and HPMA
PNPs include ease of synthesis and functionalization, and
robustness of structure integrity (158, 163). PEG is often used
for coating of particle surface to reduce uptake by the
reticuloendothelial system (RES) after intravenous
administration (a major drawback of PNPs) and thus prolong
the plasma residence time. PSs can be physically entrapped in
the core of PNPs with a hydrophilic periphery for efficient
delivery to tumor cells in an aqueous environment. After
successful delivery of PNP to tumor cells, the entrapped PS can
be released (typical mechanism for biodegradable particles) or
the porous structure of PNP may allow permeation of ROS and

interaction with the captured PS and thus maintaining their
PDT performance in cells (158, 164). In case of drugs
conjugated to polymer backbone, they can be cleaved
enzymatically, hydrolytically or as a response of pH-sensitive
bonds on change of pH (165). If targeting moieties such as
oligopeptides are bound to the polymer, selective tumor uptake
can be achieved (166). Examples of MPCs are PLA and PEG-
coated-PLA PNPs containing perfluorinated MPCs (167) or
poly(methyl vinyl ether-co-maleic anhydride) NPs which
increased the singlet oxygen generation capacity of MPc by 
10-fold compared to its free form (62, 168).

Other nanoparticle approaches include solid lipid
nanoparticles (SLN), modified silica nanoparticles (SiNPs)
(162) or metallic nanoparticles (MNPs). MNPs are
functionalized mainly by gold (AuNPs) with covalently or
non-covalently conjugated PSs (62, 169). These approaches
have been described for MPCs, however, they are not widely
used (170, 171). One specific type of extensively studied
solid nanoparticles is upconversion nanoparticles (UCNPs).

UCNPs exhibit photon upconversion, which means that two
or more incident photons of lower energy (typically in the
infrared region) are absorbed and converted into one emitted
photon with higher energy (typically in the visible or
ultraviolet regions of the electromagnetic spectrum). Mostly
used are fluorides of rare earths (group of elements consisting
of Sc, Y, and the lanthanides) which are well known for their
non-linear optical properties as downconversion or
upconversion (172-175). Basically, the most of the rare earths
have f-orbital partially filled with electrons and thus crystal
structures of mixed rare earth fluorides (it means containing
particular trivalent ions in various amounts in single crystal
lattice) feature a wealth of electronic transitions within the 4f
electron shells and transitions between closely matched
intermediate-excited states of particular ions. Typically,
compounds of general formula AREF4 (A=alkali, RE=rear
earth), e.g. NaYF4 doped with metals like Er or Yb, are used
(176-182). These mixed rare earths nanofluorides can be
prepared by the broad variety of methods (183-189). Low
systemic toxicity and cytotoxicity and negligible solubility in
aqueous media make these materials suitable for medical
applications. Their use for advanced drug delivery systems in
anticancer treatment (190, 191) and advanced photodynamic
therapy is very promising (178, 192). To achieve
biocompatibility and water dispersibility, they are commonly
subjected to surface modification with silica, porous silica,
biocompatible polymers or hydrophilic functional groups
(193). The main advantages of these approaches are possibility
to connect tumor-targeting biomolecules and covalently bind
or encapsulate molecules of PS such as various PCs and NPCs
(194, 195). After the delivery of nanoparticles into the cancer
tissue, light with deep tissue penetration (such as infrared
lasers) is applied. Upconverted light excites PS followed by
ROS production and surrounding tissue damage.
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Hydrogels are polymeric materials with hydrophilic
structures capable of holding large amounts of water in their
three-dimensional mesh structures with physical properties
similar to those of living tissues (196, 197). These are widely
used for the controlled release of hydrophilic drugs including
water soluble PCs and MPCs (198-200). They can combine
chemo-photodynamic therapy (201) or can be used for in
vivo imaging (202).

Dendrimers are typical examples of bottom-up approach in
preparation of vehicles for drug delivery as they are
synthesized stepwise. They are repetitively branched
polymers with a precisely defined diameter in the order of
nanometers and typically symmetric around the core with a
spherical three-dimensional morphology. Ability to control its
size, number of functional groups available for modifications
and predictability of the amount of incorporated drug makes
them ideal DDS with reproducible pharmacokinetics (62,
203). PS can be trapped in the voids of a dendrimer,
covalently bound to the dendrimer (204) or used as a scaffold
to form a dendrimer (205). They can be conjugated with
tumor-targeting peptides as well (204). PCs and MPCs can
play the role of core of dendrimer with significantly improved
ability to photosensitize singlet oxygen (206).

Natural cyclodextrins (CDs) are macrocyclic oligo-
saccharides shaped like the truncated cone with slightly
hydrophobic central cavity and hydrophilic outer surface
obtained by action of cyclodextrin-α-glycosyl transferase
enzyme. They have six, seven, or eight α-1,4 linked α-D-(+)-
glucopyranose units named α-, β-, and γ-CD, respectively,.
Their shape and hydrophobicity of cavity allow formation of an
inclusion complex with various lipophilic drugs. CDs can be
modified to improve their properties, such as complexation of
particular drug moiety (62, 207-210). In the literature, there
have been described covalently bonded MPCs to natural CDs
(211) or biodegradable nanoassemblies of modified CDs with
MPC (212), both to overcome poor aqueous solubility of
phthalocyanines.

Conclusion

PDT is generally known as an alternative approach for cancer
treatment. However, its future lies in multimodal treatment,
dermatology and aesthetic medicine. In cancer treatment, the
major advantages compared to surgery, chemo- or
radiotherapy include limited and more tolerable side-effects
because ROS are generated only in areas with accumulated
PS that are illuminated by sufficient doses of light of specific
wavelength. The main disadvantage of the localized damage
is recurrence due to metastases, as well as insufficient
accumulation of the PS in the tumor area far from the
vasculature. However optimal integration with other therapies
leads to improved effectiveness (e.g. photosterilization of the
tumor bed after surgical resection) and decreased side effects

(lower doses of chemotherapeutics). The difficulties with
administration and skin permeation and insufficient
accumulation in targeted tissue can be overcome using
appropriate drug delivery system with passive or active
targeting. Limited tissue penetration of light commonly used
to activate PSs to generate ROS can be overcome using
photon upconverting nanoparticles with appropriate PSs, so
far only phthalocyanines (PCs). The variability in metal
cations coordinated to the centre and the peripheral
substituents of the macrocycle results in many derivatives
with tunable photophysical and photochemical properties.
Their innovative formulations make them
Very powerful with immense promise in PDT.
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