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Abstract. Background/Aim: Spatially fractionated
radiotherapy (grid therapy) can control some bulky tumors
which is challenging for conventional radiotherapy. This
study aimed to investigate whether a novel tungsten
contained rubber (TCR) grid collimator can be employed
in electron grid therapy. Materials and Methods: The TCR
grid collimator placed on a solid water phantom, and
percentage depth doses (PDDs) and lateral dose profiles
were measured for 9 MeV electron beam with Gafchromic
EBT3 films. At the lateral dose profile, the ratios of the
dose in the areas with and without shielding (valley-to-peak
ratios) were evaluated. Results: The d,,,, values with the I,
2 and 3 mm TCR grid collimators were 1.2, 1.1 and 0.7 cm,
respectively, while the valley-to-peak ratios at each d,,,,
were 0.566, 0412 and 0.293, respectively. Conclusion:
Only the 2 mm TCR grid collimator had adequate
dosimetric features compared to the conventional grid
collimator and could be substituted.

Spatially fractionated radiotherapy (grid therapy) was
introduced by Alban Kohler in 1909 for treating deep-
seated tumors (1). It was possible to treat without the
extensive damage of skin and subcutaneous tissue
occurring following irradiation through a special grid
collimator with small circular or square apertures.
Subsequently, grid therapy was poorly evaluated and
hardly ever used until the 1930s. Following the work of
Jolles et al. (2) during the orthovoltage era, the usefulness
of the grid therapy was shown by Mohiuddin et al. in the

Correspondence to: Hajime Monzen, Ph.D., Department of Medical
Physics, Graduate School of Medical Sciences, Kindai University,
377-2, Ohno-Higashi, Osakasayama, Osaka, 859-8511, Japan. Tel: +81
723660221, Fax: +81 723680206, e-mail: hmon@med kindai.ac.jp

Key Words: Tungsten-contained rubber, electron grid therapy, bulky
superficial tumor.

late 20th and early 21st century again (3-5). The
combination of grid therapy, irradiating a dose of 15 Gy or
higher, and additional external beam resulted in higher
response rates than conventional radiotherapy alone. In
addition, Ha et al. showed the feasibility of mega-voltage
photon grid therapy (4-6), which is able to create a grid of
appropriate size and pattern using multileaf collimator. It
could treat deep-seated tumors easier than grid therapy
using cerrobend (Cerro Metal Products, Bellefonte, PA,
USA) grid collimator, although a longer delivery time was
needed (7).

Photon grid therapy is an excellent treatment, however
electron grid therapy is superior to the photon grid therapy
for large and superficial tumors where critical
radiosensitive structures are present behind the tumor in the
path of the photon beams (7), since the dose of the electron
beam rapidly attenuates after passing through a medium (8-
10). Tamura et al. have shown that the Tungsten Functional
Paper (TFP) could be used in electron grid therapy, having
both radiation shielding ability and paper flexibility
properties (11-16), instead of cerrobend by Monte Carlo
simulation (10). In a previous study, tungsten-contained
rubber (TCR) (BOSOTE®, Hayakawa Rubber Co., Ltd.
Hiroshima, Japan) was developed and displayed adequate
shielding efficiency against electron beams (17). The
cerrobend has odors and is possibly toxic to the human
body, due to the vapor cloud of heavy metals during
processing and may have harmful effects on the
environment (18-20). On the other hand, TCR is a non-
toxic, shielding material that is good for the human body
and environment due to its ecofriendly products (lead free),
has high density and is waterproof (16, 17). In addition,
owing to its flexibility, TCR can adapt and acquire various
conformations such as shoulder and belly (17).

The aim of this study was to show the feasibility of TCR
grid collimators in electron grid therapy by a phantom study.
The dosimetric characteristics and their possible clinical
applications were investigated.
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Table 1. Physical properties of tungsten-contained rubber collimator.

Item Value
Length (cm) 25
Width (cm) 25
Density (g/cm3) 7.65+0.03
Hardness (Type-A) 77
Tensile strength (MPa) 4.5
Elongation (%) 400

Table II. Measured values of depth of d,,,,, dgy and dg from the PDDs
for the grid-collimated electron beams with TCR, cerrobend (7) and

TFP (10) grid collimators.

Grid-collimated electron beams with: Depth of grid electron

beams (cm)

dmax  doo dgo
None 1.9 2.5 3.0
TCR grid 1 mm 1.2 1.9 24
TCR grid 2 mm 1.1 1.8 23
TCR grid 3 mm 0.7 1.5 22
Cerrobend grid 1.4 cm (previous report) 1.1 22 2.6
TFP grid 5.2 mm (previous report) 1.1 19 23

TCR: Tungsten-contained rubber; TFP: tungsten-functional paper.

Materials and Methods

The dosimetric characteristics of the TCR grid collimators in
electron grid therapy were evaluated with phantom experiments.
Table I shows the physical properties of TCR. The elemental
composition of TCR (mol%) is H: 1.0%, C: 6.5%, O: 0.5%, W:
90.0% and others: 2.0%. TCR grid collimator was created according
to previous studies (7, 10), the aperture diameter of the holes were
2.5 cm and the center-to-center spacing of the holes were 3.0 cm.
The schema of the TCR grid collimator is shown in Figure 1.

The geometry for the measurements of the depth and lateral dose
profiles with the TCR grid collimator is shown in Figure 2. An
electron beam of a nominal energy of 9 MeV was generated with a
linear accelerator (Clinac 21EX®, Varian Medical Systems, Palo Alto,
CA, USA) with a 20x20 cm? electron applicator. Each measurement
was taken with 200 MU irradiation. The electron beams were
collimated with the TCR grid collimator placed on the surface of a
virtual water phantom (MedTec Inc., Orange City, IA, USA). The
thicknesses of the TCR grid collimators were 1, 2 and 3 mm. The
percentage depth dose (PDD) at the center of the beam axis and the
lateral dose profile (source-to-surface distance=100 cm) for the grid-
collimated electron beams were measured with Gafchromic EBT3
films (ISP, Wayne, NJ, USA). The films were arranged parallel to the
beam’s central axis for PDD and lateral dose profile measurements.

First, the depths of the maximum dose (d,,,,), 90% dose (dgy)
and 80% dose (dgy) in the virtual water phantom were evaluated
from PDD data. Then, the lateral dose profiles were evaluated at
dyaxs dop and dgy with valley-to-peak ratios, defined as dose ratios
of the blocked to the open areas. The valley-to-peak ratios were
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Figure 1. Schema of the TCR grid collimator. The aperture diameter was
2.50 c¢m, the center-to-center spacing of holes was at 3.00 cm intervals
and the blocked area was 80%.

SSD:
100 ecm

Electron applicator

(20x20 cm’)

TCR grid collimator
w\&%\\&\ N
N S

o
2
. -
Ak IR
A £

EBT3 Film

Figure 2. Schematic diagram of the experimental setup for film
dosimetry in virtual water phantom. Films were arranged parallel to
the beam’s central axis.

calculated from the ratios of the average values at the center of four
blocked areas and five open areas (10).

Results

The PDD curves for the grid-collimated electron beams at
each thickness of the TCR grid collimator are shown in
Figure 3. From the PDD curves, the depths of d,,,,,, dgy and
dgg at each thickness of the TCR grid collimator are shown
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Figure 3. PDDs for the grid-collimated electron beams at 9 MeV electron beams at each thickness of the TCR grid collimator at the center of an
open area in the position of the center opening in the TCR grid collimator. The PDD curves were normalized by the value of each d,,,,,.

Table III. Measured values of peaks, valleys and valley-to-peak ratios at d,),,,.,

beams with TCR, cerrobend (7) and TFP (10) grid collimators.

dgg and dg in lateral dose profiles for the grid-collimated electron

Grid-collimated electron beams with: dinax dgg dgo

Peak Valley Ratio Peak Valley Ratio Peak Valley Ratio
TCR grid 1 mm 100.85 57.06 0.566 90.02 59.59 0.662 79.96 56.40 0.705
TCR grid 2 mm 99.49 40.95 0412 88.40 48.11 0.544 79.19 48.10 0.607
TCR grid 3 mm 100.16 29.32 0.293 88.63 4351 0.491 80.60 45.59 0.566
Cerrobend grid 1.4 cm (previous report) 99.63 47.66 0478 87.56 57.72 0.659 79.84 58.24 0.729
TFP grid 5.2 mm (previous report) 100.79 48.98 0.486 90.66 56.62 0.625 80.48 56.74 0.705

TCR: Tungsten-contained rubber; TFP: tungsten-functional paper; Peak: mean relative dose at center of open area (%); Valley: mean relative dose

at center of blocked area (%); Ratio: valley-to-peak ratios.

in Table II. The d,,,, was shifted toward the surface with
increasing thickness of the TCR grid collimator. The PDD
curves with the TCR grid collimator were shifted toward the
surface compared to that without the TCR grid collimator.
Lateral dose profiles for the grid-collimated electron
beams at each TCR grid collimator thickness at d,,,,, dgg
and dg, are shown in Figure 4. The mean relative doses to
the open areas (as peak) and the blocked areas (as valley)
and valley-to-peak ratios at d,,,,,., dgg and dg, at each TCR
grid collimator thickness are shown in Table III. The

valley-to-peak ratios were increased with increasing depth,
and decreased with increasing grid collimator thickness
because of shielding intensity. The low valley-to-peak
ratios show the large difference between the valley and
peak dose values, which mean high sparing of normal
tissue (10). The TCR grid collimator thickness affected the
sparing effect and it was decreased with depth increasing.
Therefore, the relation between the effect of sparing
normal tissue and treatment range such as dg, or dg, was
a tradeoff (10).
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Figure 4. Lateral dose profiles for the grid-collimated electron beams at 9 MeV electron beams with TCR grid collimator of 1 mm, 2 mm and 3 mm
thickness in depths of d,,, dgy and dgy. The profiles were normalized by the central axis measurement value at the d,,, . corresponding to TCR
grid collimator thickness.
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As shown in Tables II and III, only the 2 mm TCR grid
collimator achieved the equivalent dosimetric properties of
a 5.2 mm TFP grid collimator (10) for PDD and lateral dose
profiles at d,,,,, dgp and dg. In addition, it also achieved the
dosimetric characteristics of a cerrobend grid collimator for
lateral dose profile, although the PDD curve with the TCR
grid collimator was shifted to the surface compared to that
with the cerrobend grid collimator, which had the same result
as the TFP grid collimator.

Discussion

In this study, we showed the TCR grid collimator could be
employed to the electron grid therapy by a phantom study.
The 2 mm TCR grid collimator had almost identical
dosimetric characteristics as grid collimators compared to 1.4
cm cerrobend or 5.2 mm TFP (7, 10).

The result of PDD shows that the depths of d,,,,, dgy and
dg, were shifted toward the surface as the thickness of the
TCR grid collimator was increasing.

The valley-to-peak ratios were changed with measurement
depth, and their maximum values were at d,,,,. It has been
shown that valley-to-peak ratios, beam spacing and valley doses
are related to radiobiological response in animal experiments
(21). Wide beam spacing, low valley-to-peak ratios and low
valley doses have been related to healthy tissue conservation
(21). In addition, high valley-to-peak ratios without high valley
doses and cold spots have been related to tumor control (21,
22). Based on that, the 2 mm TCR grid collimator was the most
suitable because the peak doses, valley doses and valley-to-peak
ratios were similar to previous studies (7, 10). To reduce the
dose of irradiation field's penumbra of 2 mm TCR grid
collimator, an additional shield could be placed up-stream of
TCR grid collimator as has been shown by Tamura et al. (10).

Mohiuddin et al. have shown the usefulness of photon grid
therapy for treatment of sarcoma (total response rate of 83%)
and squamous cell carcinoma (total response rate of 94%) (4).
On the other hand, photon grid therapy has not adapted to treat
superficial cancers like melanoma (total response rate of 50%)
(4). Electron grid therapy was advantageous against superficial
cancers as described by Meigooni et al. (7) and Tamura et al.
(10). Additionally, the TCR gird collimator was better adapted
to put on the patient’s body surface than the TFP grid
collimator owing to its flexibility, waterproof property and
moderate weight. From these reasons, the TCR grid collimator
was expected as excellent grid collimator to treat superficial
cancers with electron grid therapy rather than cerrobend or
TFP grid collimator.

Conclusion
Only the 2 mm TCR grid collimator, laying simply on a

patient’s skin, had adequate dosimetric characteristics with
conventional grid collimators in electron grid therapy. The

TCR grid collimator has the features of flexibility, waterproof
and moderate weight, therefore it is expected to be used for
electron grid therapy instead of the conventional grid
collimator.
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