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Abstract. Background/Aim: This study aimed to identify
biomarkers for predicting the prognosis of advanced gastric
cancer patients who received docetaxel, cisplatin, and S-1
(DCS). Materials and Methods: Gene expression profiles were
obtained from the Gene Expression Omnibus database
(GSE31811). Gene-Ontology-enrichment and KEGG-pathway
analysis were used for evaluating the biological functions of
differentially-expressed genes. Protein—protein interaction
(PPI) network and Kaplan—Meier survival analyses were
employed to assess the prognostic values of hub genes. Results:
A total of 1,486 differentially expressed genes (DEGs) were
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identified, including 13 up-regulated and 1,473 down-regulated
genes. KEGG pathways such as metabolic pathways, cell
adhesion molecules (CAMs), PI3K-Akt signaling pathway and
pathways in cancer were significantly represented. In the PPI
network, the top ten hub genes ranked by degree were GNG7,
PLCBI, CALMLS5, FGFR4, GRB2, JAK3, ADCY7, ADCY?9,
GNAS and KDR. Five DEGs, including ANTXRI, EFNAS,
GAMT, E2F2 and NRCAM, were associated with relapse-free
survival and overall survival. Conclusion: ANTXRI, EFNAS,
GAMT, E2F2 and NRCAM are potential biomarkers and
therapeutic targets for DCS treatment in GC.

Gastric cancer (GC), as the fourth most common cancer, has
become a major global heath challenge. It is estimated that
about 934,000 new GC cases are diagnosed and that there are
about 700,000 mortalities annually (1). In China, GC is
estimated to cause more than 220,000 mortalities annually,
which accounts for approximately one-third of global gastric
cancer mortalities (2). Despite improvement in diagnosis and
treatment, the prognosis of gastric cancer patients remains very
poor. Surgery is the primary treatment for early-stage GC (3).
Chemotherapy plays an important role in GC treatment since
most gastric cancers are initially diagnosed at advanced or
metastatic stages (4). The efficacy of a triple-drug combination
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chemotherapy regimen consisting of docetaxel, cisplatin, and S-
1 (DCS) has been investigated for the treatment of advanced
GC. DCS treatment was reported to be well tolerated in
metastatic GC patients, with a very high response rate (87.1%),
and a high downstaging rate (25.8%) leading to a high curative
surgery rate (22.6%) (5-6). Furthermore, in a Phase II study of
this regimen showed that DCS treatment for localized advanced
GC (AGC) was feasible and highly effective with a 74.4%
response rate, and disease control ratio was 100%. In addition,
DCS as neo-adjuvant treatment for localized AGC demonstrated
a sufficient RO resection rate and a good pathological response
with manageable toxicities (7). However, efficiency of DCS
regimen is limited by chemoresistance in some cancer patients.
Biomarkers for prognosis prediction and their underlying
molecular mechanisms are yet to be fully elucidated.

In this study, a set of differentially expressed genes
(DEGs) were obtained from the microarray dataset
GSE31811, which was downloaded from Gene Expression
Omnibus  (GEO;  https://www.ncbi.nlm.nih.gov/geo/),
containing 19 patients with unresectable metastatic GC who
received DCS as first-line therapy. We identified potential
biomarkers and pathways associated with DCS resistance by
analyzing GO and KEGG pathway enrichment, and
constructing a protein-protein interaction (PPI) network. The
prognostic values of the biomarkers and their potential
underlying mechanisms were also assessed.

Materials and Methods

Chemo-resistant gastric cancer patient datasets. Genome-wide gene
expression profile data generated from the Affymetrix platform
(Affymetrix Human Genome U133 Plus 2.0 Arrays) and the
corresponding clinical information of patients with chemo-resistant
GC were retrieved from the GEO database (https://
www.ncbi.nlm.nih.gov/geo). "chemo-resistant gastric cancer" was used
as a keyword to perform queries. Inclusion criteria were as follows:
species-Homo sapiens, expression profiling by array, and samples with
available clinical information for analysis. The expression microarray
datasets GSE31811 and GSE26253 were downloaded. Overall, 19
patients with unresectable metastatic gastric cancer who received DCS
as first-line therapy were enrolled in this study. No approval was
required from the ethics committee because these data were obtained
using the GEO database. The workflow chart is shown in Figure 1.

Gene expression profile data. The GSE31811 dataset consisted of
19 patients with unresectable metastatic gastric cancer who received
DCS as a first-line therapy. According to RECIST criteria, 8 patients
were identified as non-responders and 11 patients as early-
responders. The GSE26253 signature, that comprised 432 samples
of gastric cancer patients that had undergone curative surgery plus
chemoradiotherapy, was applied to verify the model.

DEGs identification. The differentially-expressed genes associated
with DCS resistance were obtained from GSE31811. The mRNA
expression profile was performed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). The Benjamini and
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Figure 1. Bioinformatics flowchart of the GEO database.

Hochberg method was used to adjust false-positives. Fold-change
(FC) in gene expression was calculated with the threshold criteria of
the adj. p<0.05 and llog2FCI =1 were set for DEGs selection. Then,
we selected intersection mRNAs and samples with the survival
information obtained from GSE26253 and TCGA for further analysis.

Gene ontology and pathway analysis. All DEGs were placed in the
analysis tool Database for Annotation, Visualization and Integrated
Discovery (DAVID, http://david.abcc.nciferf. gov/) to obtain relevant
functional annotation. DAVID was employed for gene ontology (GO),
which supplied information about molecular functions, cellular
components, and biological processes. In addition, DAVID was also
used for analyzing Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www. kegg.jp/) pathway enrichment of DEGs.

Protein—protein interactions (PPI) network and module analysis.
Cytoscape v3.0 software was used for constructing an mRNA-
mRNA interaction network, which was based on GO enrichment
and pathway analysis of differentially- expressed genes. The matrix
of gene expression values was visualized graphically. The gene-
interaction relationship was represented by nodes and edges in the
graph. The types of gene-gene interaction relationships included
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Figure 2. Top 20 enriched GO terms for differentially up-regulated and down-regulated genes (the bar plot presents the enrichment scores of the
significantly enriched GO terms).
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Figure 3. Top 15 enriched KEGG pathways for differentially up-regulated and down-regulated genes (the bar plot presents the enrichment scores
of the significantly enriched KEGG pathways).
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Figure 4. Signal network of differentially expressed genes. Red cycle nodes represent up-regulated genes, and green cycle nodes represent down-
regulated genes. Edges represent interactions between genes (arrowheads represent targets). Interaction types: a: activation; b: binding/association;
c: compound; exp: expression; ind: indirect effect; inh: inhibition; +p: phosphorylation; —p: dephosphorylation.

phosphorylation, dephosphorylation, inhibition and activation. In the
signaling network, the size of the cycle was considered as the
frequency of the gene interaction. The most prominent central genes
in the network indicated the genes with the highest frequency.

Evaluation of prognostic value of hub genes. Kaplan-Meier (KM)
plots enable comprehensive analysis of prognostic values among lists
of genes in GC based on GSE26253 and TCGA. The prognostic value
of hub genes for relapse-free survival (RFS) were displayed with the
hazard ratios (HR) and log-rank p-values. To identify potential
candidate biomarkers for predicting overall survival (OS) of GC
patients, the gene expression profiling interactive analysis (GEPIA,
http://gepia.cancer-pku.cn) was established for customized genomic
analysis based on the Cancer Genome Atlas (TCGA) database.

Statistical analysis. Generally, a p-value<0.05 was defined as a cut-
off criterion and considered statistically significant in all cases. SPSS
17.0 (Chicago, IL, USA) and Prism 5.0 (GraphPad Software, San
Diego, CA, USA) were used for statistical analysis and illustration.

Results

GO enrichment analysis of DEGs. A total of 1,486 DEGs
were identified to be associated with DCS-resistance, with
13 genes up-regulated and 1473 down-regulated. GO
enrichment results were conducted by uploading all DEGs
to the online tool DAVID (http://david.abcc.nciferf.gov/).
First, the down-regulated genes were analyzed. This study

1693



ANTICANCER RESEARCH 39: 1689-1698 (2019)

1694

Relapse Free Survival

Relapse Free Survival

Relapse Free Survival

Relapse Free Survival

10

08

06

04

02

00

10

08

08

04

02

00

10

03

06

04

02

00

10

08

06

04

02

00

CASPS, p=0.0348

—— High Expressicn
——— Low Expression

(=]

T T T
50 100 150

Time (months)

CYBSR3, p=0.0058

—— High Expression
—— Low Expression

o -

T T T
50 100 150

Time (months)
LTB4R2Z, p=0.0201

—— High Expression
—— Low Expression

- - .
50 100 150

Time (months)

DYMNC1LI2, p=0.0375

—— High Expression
——— Low Expression

T T T
50 100 150

Time (months)

Relapse Fres Sundval

Relapse Free Survival

Relapse Free Survival

Relapse Free Survival

10

08

08

04

02

00

10

08

08

04

02

00

10

0a

06

04

02

00

10

08

04

04

0.2

0o

ACOT7, p=0.0362

—— High Expression
—— Low Expression

o
M""‘"‘"’*"me Hee LB e ]

T T T
50 100 150

Time (months)

ASPSCR1, p=0.0202

———  High Expression
—— Low Expression

T T
50 100 150

Time (months)

CcD27, p=0.032

—— High Expression
——  Low Expression

T T
50 100 150

Time (months)

STX4, p=0.0144

—— High Expression
—— Low Expression

50 100 150

Time (months)

Figure 5. Continued




Liu et al: Chemo-resistant Gastric Cancer Associated Gene Expression

ANTXR1, p=0.0471

High Expression
—— Low Expression

z
<
2 "t i
iy g
& BBttt
(i
[T
_§ =
&
o
=]
=
=
! !
o 50 100 150
Time (months)
EFNAS, p=0.0229
= | |
fo e b —— High Expression
i —— Low Expression
w |
= .
. >
= A 4
g B \'—“"‘.-I-H‘. Wttt i e i i ot
Lo N By
l‘% 'HII}-L'_M
@
o=y
§ =1
o _
o
=
=]
T T
o 50 100 150
Time (manths)
E2F2, p=0.0416
= | |
= T —— High Expression
—— Low Expression
= ]
= 1
2
€ w
@ o
@
&
(i
g = |
& =
]
o
o
= =1
a2 |
o

I : i 4
0 50 100 150

Time (months)

RHOQ, p=0.0183

10

—— High Expression
— Low Expression

08

06

Relapse Free Survival

.4
.{._ 1

f

s

I

&

i

04

o
L=1
=
=1
I T T
o 50 100 150
Time (months)
UBE2D4, p=0.0446
3 -
- —— High Expression
—— Low Expression
o
=
] :_H"'-\-og._,.
g ] b, e, - " .
A o -
E g NS T
w o
@
-
E— =1
&
£
=
=
=
I T T
o 50 100 150
Time (months)
GAMT, p=0.0213
= N
- —— High Expression
—— Low Expression
« _
=1
j \‘\:‘::M**"«
E w b ""h-ﬂug.‘q'”__ S "
o = . TN
8 e Ly
w Rt
@
g 3
ki
o
o
o=
= |
=]
T T T
(5] 50 100 150

Time (months)

Figure 5. Kaplan—Meier survival curves for 5 genes whose expression is associated with overall survival. Vertical axis: Probability of overall

survival; Horizontal axis: survival years.

found that the expression of 1,473 genes was decreased in
GC patients who were DCS-resistant compared with DCS-
sensitive patients. Most of the down-regulated genes were
involved in biological processes such as signal
transduction, intracellular signal transduction, apoptosis
and inflammatory response. Then, 13 up-regulated DEGs
were used for GO-enrichment analysis. The results showed
that up-regulated DEGs were primarily involved in

negative regulation of MAP kinase activity, positive
regulation of myosin light chain kinase activity, positive
regulation of T cell mediated immunity, negative regulation
of glucose transport and sequestering of triglycerides
(Figure 2). GO-enrichment analysis suggested that the
differentially-expressed mRNAs may be involved in the
regulation of gene transcription, cell apoptosis and cellular
inflammatory responses.

1695



ANTICANCER RESEARCH 39: 1689-1698 (2019)

ANTXR1, p=0.0342

=1
b High Expression
—— Low Expression
o0
=1
E =
2
™
T o=
=] =
oy
=
=
= -
- T T T T T T T
o 500 1000 1500 2000 2500 3000 3500
Time (days)
E2F2, p=0.0098
=
= High Expression
—— Low Expression
e
=]
E w«
£ @
s 1y
= {1
g z g
1
L
o~ Ln—n—
=
¥
=
T T T T
o 500 1000 1500 2000 2500 3000 3500
Time (days)
GAMT, p=0.0125
3 —— High Expression
—— Low Expression
s 2
=
R 5 .I\"a»
e = \ i
= b, o FPE
E = \II ity
= PR e
S ot Loyt
- m s
=
=
=
I ——— — S— P———

o 500 1000 1500 2000 2500 3000 3500

Time (days)

KEGG pathway analysis of DEGs. The KEGG-pathway
program (http://www.genome jp/kegg/tool/search pathway.html)
was used to verify the signaling pathways corresponding to the
up-regulated genes and the down-regulated genes, respectively.
Pathway analysis demonstrated that the significant pathways
corresponding to the up-regulated genes were fluid shear stress
and atherosclerosis, the NOD-like receptor signaling pathway,
MAPK signaling pathway, antifolate resistance and ascorbate
metabolism. Moreover, down-regulated DEGs were
significantly enriched in metabolic pathways, cell-adhesion
molecules (CAMs), the PI3K-Akt signaling pathway and
pathways involved in cancer. Among those enriched pathways,
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Figure 6. TCGA survival curves for 5 genes whose expression is
associated with overall survival. Vertical axis: Probability of overall
survival; Horizontal axis: survival years.

DGEs included those in the MAPK signaling pathway and
PI3K-AKT signaling pathway which have been demonstrated
to be associated with chemoresistance, invasion, and metastasis
(8-10). "Pathways in cancer" that regulated the proliferation and
apoptosis of cancer cells has been verified (11). KEGG pathway
analysis indicated that some of the classic pathways involved
in chemoresistance of GC were activated (Figure 3).

PPI network and module analysis. The PPI network of DEGs
was constructed with Cytoscape v3.0 software based on GO and
KEGG pathway analysis. The top ten genes ranked by degree
were identified as hub genes. Hub genes including GNG7,
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PLCB1, CALMLS, FGFR4, GRB2, JAK3, ADCY7, ADCY?9,
GNAS and KDR had the highest degree of nodes among the
hub genes. In addition, high expression of the chemokine family
of proteins, such as GRB2 and JAK3, involved in proliferation,
migration, and invasion of cancers, was found (12, 13).
Moreover, FGFR4, reported to be associated with epithelial-
mesenchymal transition (EMT) and metastasis, was also shown
to be significant in the PPI network (14, 15). The up-regulated
and down-regulated genes had complex interactions with other
genes in the signaling network (Figure 4).

Prognostic analysis of hub genes. Furthermore, the mRNA
expression of the hub genes was externally validated in
GSE26253. KM-plot analysis was used to elucidate the
influence of the DGEs in GSE26253 on RFS. A total of 34
DEGs were associated with RFS. Increased expression of 9
genes, ANTXR1, CYB5R3, DYNCILI2, EFNAS, GAMT,
LTB4R2, RHOQ, STX4 and UBE2D4, was associated with a
decreased RFS rate. The increased expression of 25 genes was
associated with an increased RFS rate, including E2F2,
ACOT7,ASPSCR1, CASP8 and CD27 (Figure 5). Moreover,
among the above 34 genes, increased expression of four genes
(ANTXR1, EFNAS5, GAMT and NRCAM) was associated
with a decreased OS rate. In addition, increased expression of
E2F2 was associated with an increased OS rate (Figure 6).

Discussion

Metastasis is responsible for the poor prognosis of advanced
GC patients (16-17). DCS treatment was reported to be well
tolerated and highly effective in patients with metastatic GC
(5-6). However, DCS chemoresistance remains one of the
major challenges in the treatment of metastatic GC.
Therefore, identification of key genes and potential
mechanisms underlying DCS resistance should improve
prognosis of patients treated with DCS treatment.

The GSE19069 dataset was used in the present study for a
comprehensive bioinformatics analysis and 13 up-regulated and
1473 down-regulated DEGs were identified. The results of the
GO analysis demonstrated that the down-regulated DEGs were
significantly related to apoptosis and development, while the
up-regulated DEGs were related to cell proliferation and
immune response. The KEGG enrichment analysis indicates
that the DEGS were significantly involved in metabolic
pathways and the PI3K-Akt signaling pathway.

Metabolic pathways are crucial for the growth and
survival of cancer cells. Cancer cells require high energy and
metabolic pathways are modified to match this need. The
biosynthesis of molecules and the generation of energy by
metabolic pathways could protect cancer cells from oxidative
stress and compensate for a reduced supply of oxygen and
nutrients. Thus, metabolic pathways support cancer cell
proliferation, angiogenesis, metastasis and prevent apoptosis

(18-20). Our results suggest that metabolic reprogramming
may be the cause of DCS-resistance found in GC patients.

The PI3K/Akt signaling pathway regulates cancer cell
transcription, translation, proliferation, growth, and survival
(21). Moreover, deregulation of the PI3K/Ak pathway is
frequently encountered in GC and plays an important role in
tumor initiation and progression. The PI3K/Akt pathway was
also reported to be associated with the metastatic cascade in
GC, which includes cytoskeletal remodeling, proteolytic
activity and resistance to chemotherapy. Oki et al.. revealed
that the PI3K-Akt signaling pathway was correlated with
increased resistance to multiple chemotherapeutic agents such
as S-fluorouracil (5-FU), doxorubicin, and cisplatin (22). Thus,
the PI3K-Akt signaling pathway alterations may be biomarkers
for predicting the efficacy of DCS therapy. Understanding the
specific association between related DGEs expression and
PI3K/Akt/mTOR pathway alterations in GC may lead to the
development of new therapeutic strategies for DCS.

In PPI network analysis, we identified hub genes, which
consisted of the ten DEGs with the highest degree of
interaction. Noteworthy, seven of the 10 hub genes (GNAS,
ADCY7, ADCY9, CALMLS, FGFR4, KDR, PLCBI)
associated with DCS resistance were commonly enriched in
the Rapl signaling pathway. Rapl is a small GTPase and
belongs to the Ras-related protein family. It plays a specific
role in the regulation of many cellular processes, including
cytoskeletal rearrangement and cell cycle progression (23,
24). RAP1 has also been linked to the control of cancer-cell
growth and survival. Mechanistically, Ras was reported to
initiate and sustain ERK signaling, which is activated in many
malignancies and may be a target for cancer therapy (25).

Noteworthy, the present study was the first in silico
analysis focusing on bioinformatics analysis of DCS
resistance in GC, predicting the key genes and pathways
associated with DCS resistance. In addition, the present
study also investigated the prognostic values of key genes.
Five DGEs, including ANTXR1, EFNAS, GAMT, E2F2 and
NRCAM, were associated with DFS and OS.

In conclusion, our study revealed DCS-resistance-related
genes and pathways in GC patients using bioinformatics.
Gene expression of ANTXR1, EFNAS, GAMT, E2F2 and
NRCAM were identified as potential prognosis markers for
DCS chemotherapy response in GC patients.
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