
671Abstract. Background/Aim: Patients with non-small cell
lung cancer (NSCLC) treated with epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitors (TKIs) eventually
develop resistance to these drugs. Although various
mechanisms of such resistance have been identified, the
mechanism in many cases remains unknown. Materials and
Methods: Whole-exome sequencing was performed for tumor
tissue from 15 patients with NSCLC who developed EGFR-
TKI resistance. Tumor specimens obtained before EGFR-TKI
treatment were also analyzed for four patients and normal
white blood cell samples for six patients in order to detect
genomic alterations that occurred during treatment. Results:
The mutational signature and mutational load acquired during
EGFR-TKI treatment varied among patients, with common
EGFR-TKI resistance mechanisms including the T790M
secondary mutation of EGFR and MET amplification being
acquired together with many other genomic alterations. Our
results provide insight into the mutational landscape acquired
during the development of EGFR-TKI resistance in NSCLC.

The development of cancer is governed by the accumulation
of many somatic genetic alterations, some of which are
driver mutations (1, 2). Recent advances in biomedical
research have provided important insight into the molecular
basis of cancer and have led to breakthroughs in therapeutic
interventions (3-5). Mutations in the epidermal growth factor
receptor (EGFR) gene and rearrangements of the anaplastic
lymphoma kinase (ALK) gene that result in constitutive up-
regulation of the tyrosine kinase activity of the encoded
proteins have been identified as drivers of non-small cell
lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) that
target these mutant kinases–including gefitinib (5) and
erlotinib (6) for EGFR, and crizotinib for ALK (3, 7), have
shown marked efficacy for the treatment of NSCLC positive
for the corresponding genetic alterations, with treatment
decisions being currently based on testing for these genetic
changes (8, 9). However, all patients with NSCLC who are
initially sensitive to TKIs eventually develop resistance to
these drugs that is mediated by various mechanisms (10-13). 

Well-characterized mechanisms underlying the resistance
of NSCLC to EGFR-TKIs include the T790M secondary
mutation of EGFR (11-13); the activation of alternative
signaling pathways mediated by amplification of MET proto-
oncogene, receptor tyrosine kinase (MET) or overexpression
of human epidermal growth factor receptor (HER) family
proteins (14, 15); aberrant downstream signaling of EGFR
mediated by KRAS proto-oncogene, GTPase (KRAS)
mutation or loss of phosphatase and tensin homolog (PTEN)
(16-18); EGFR-TKI-induced apoptosis associated with Bcl2
like 11 (BCL2L11) deletion polymorphism (19); and
transformation to small cell carcinoma (20, 21). Although the
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T790M secondary mutation of EGFR is rarely present before
EGFR-TKI treatment, it has been detected in about half of
such treated patients. Detection of this mutation has, thus,
become an important determinant of treatment strategies,
such as the administration of third-generation EGFR-TKIs
that target EGFRT790M (21-24), and attempts are underway
to develop additional agents to overcome EGFR-TKI
resistance (24-26). Despite the identification of various
mechanisms of EGFR-TKI resistance, in many cases they
remain obscure. Furthermore, genomic alterations that might
occur in addition to the characterized resistance-conferring
changes are largely unknown. For example, it remains
unclear whether other genetic changes accompany the
appearance of the T790M secondary mutation of EGFR and,
if so, whether such additional changes occur selectively with
the T790M mutation or also accompany the genetic
alterations underlying other resistance mechanisms.

The recent development of next-generation sequencing
(NGS) technology has allowed the identification of somatic
mutations at the whole-genome level. Whole-exome
sequencing (WES), in which captured coding regions of the
genome are subjected to sequencing, is a cost-effective
method for the detection of disease-causing variants and
discovery of drug targets. In order to characterize further the
mechanisms of acquired resistance to targeted therapy in
NSCLC, we performed WES on tumor DNA from patients
with NSCLC with acquired resistance to EGFR-TKIs. 

Materials and Methods

Patients and specimens. Fifteen Japanese patients with NSCLC
were included in the study. All patients were enrolled and examined
between January 2013 and December 2015 and were treated daily
with either erlotinib or gefitinib. Patient specimens were collected
and studied with the approval of the Ethical Review Board for
Human Genome/Gene Research at each participating institute.
Informed consent was obtained from all participants. In four patients
(cases 1-4), cancer specimens were obtained both before EGFR-TKI
treatment and after treatment failure. In six patients (cases 5-10),
cancer specimens obtained after EGFR-TKI treatment failure as
well as normal white blood cell (WBC) samples were analyzed. In
the five remaining patients (cases 11-15), only cancer specimens
obtained after EGFR-TKI treatment failure were studied.

WES library preparation and sequencing. Genomic DNA was
extracted from each specimen, and libraries were generated with the
use of a SureSelect XT Human All Exon V5+lncRNA enrichment
kit (Agilent, Santa Clara, CA, USA). The libraries were sequenced
on an Illumina HiSeq 2000 instrument to generate 100- or 133-
nucleotide paired-end reads for each sample.

WES analysis. High-quality reads were obtained after trimming the
low-quality bases from the 3’ end and the adapter sequences from the
5’ end with the use of the NGS QC Toolkit (27). The resulting reads
were aligned to the reference human genome (hg19) (28) with the use
of the Burrows-Wheeler Aligner (29). The alignment information was

stored in BAM format files, and duplications were marked with the
use of Picard (http://broadinstitute.github.io/picard). Realignment and
recalibration were performed to obtain reliable alignment results with
the use of Genome Analysis Toolkit (GATK) (30). 

Somatic single-nucleotide variations (SNVs) in TKI-resistant
tumors, TKI-sensitive tumors, and WBCs were detected with GATK.
De novo SNVs were selected by subtraction of those identified in TKI-
sensitive tumors or WBCs from those identified in TKI-resistant
tumors. A series of filters was then applied to define SNVs. For
somatic mutations, the mutant allelic frequency had to be ≥10% and
mutations with low base quality (<20) or low mapping quality (<20)
were discarded. Other thresholds for determination of somatic point
mutations included a sequencing depth for both tumor and matched
normal sample of ≥20, a distance between two adjacent mutations of
≥10 bp, and occurrence outside of simple repeat regions. Allelic
frequencies in the Exome Aggregation Consortium data (http://
exac.broadinstitute.org), Exome Sequencing Project 6500 data
(http://evs.gs.washington.edu/EVS), and The Human Genetic Variation
Database (http://www.genome.med.kyoto-u.ac.jp/SnpDB) had to be
≤0.1%. SNVs that overlapped with single-nucleotide polymorphisms
in dbSNP version 138 (31) were also removed. Nonsynonymous
missense mutations called by WES were evaluated with SIFT
(http://sift.jcvi.org) and Polyphen2 (http://genetics.bwh.harvard.edu/
pph2) for their potential impact on protein function. Mutect was also
used with default options (32) to detect de novo SNVs in cases 1 to 10.
The SomaticIndelDetector tool included in GATK was used to detect
de novo insertions-deletions (indels) by comparison of specimens as
described above, with the command for filtering option being
“T_COV<20||N_COV<10||T_INDEL_F<0.1||T_INDEL_CF<0.7.”
ANNOVAR (33) was used to annotate the variant results, and
EXCAVATOR (34) was used to detect copy number variants (CNVs)
by comparison of TKI-resistant tumors with control samples (TKI-
sensitive tumors or WBCs).

Data availability. Sequencing data have been deposited under the
accession number JGAS00000000102 in the Japanese Genotype-
Phenotype Archive (JGA, http://trace.ddbj.nig.ac.jp/jga).

Results
Clinical characteristics of the study patients. All patients
were Japanese and included 10 women and five men with an
age range of 47 to 79 years (Table I). Ten patients (66.7%)
were never-smokers and five (33.3%) were former smokers.
Twelve patients had stage IV adenocarcinoma and the
remaining three had recurrent adenocarcinoma at the start of
EGFR-TKI therapy. Eight patients were treated with
gefitinib, and seven received erlotinib. The median duration
of EGFR-TKI therapy was 347 days, ranging from 80 to
2,557 days. Cancer specimens were obtained after EGFR-
TKI treatment failure for all patients. Cancer specimens were
also obtained by biopsy before TKI treatment in four patients
(cases 1-4), and WBCs were obtained in six patients after
TKI treatment (cases 5-10) as control samples.

Mutational signatures. The most frequent base substitution
was C-to-T (G-to-A) in all tumor specimens of the study
patients, with the second most frequent being A-to-G 
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(T-to-C) with the exception of EGFR-TKI-resistant specimens
in cases 1 and 8 (Figure 1). Hydrolytic deamination of
cytosine or 5-methylcytosine (5mC) results in C-to-U and
5mC-to-T mutations, respectively, with subsequent misrepair
leading to replacement of uracil with thymine and 
a consequent C-to-T transition. Frequent 5mC-to-T
substitutions were previously implicated in the appearance of
the T790M (ACG→ATG) mutation of EGFR (35). The C-to-
T mutation was also previously found be strongly positively
correlated with age (1), which is consistent with the age range
(47 to 79 years) of the patients in the present study. The point
mutations acquired during EGFR-TKI treatment varied
among patients. For example, C-to-T and C-to-A mutations
increased markedly during EGFR-TKI treatment in cases 1
and 2 but not in cases 3 and 4 (Figure 1). Patients 1 and 2
were never-smokers, suggesting that some other stress that
induces point mutations at such sites might be related to
EGFR-TKI resistance.

T790M mutation of EGFR and MET amplification are
accompanied by a large number of additional mutations. The
EGFR mutations detected before TKI treatment are shown
in Table I. All patients had NSCLC positive for activating
mutations of EGFR, with nine and six patients harboring
exon 19 deletions and L858R in exon 21, respectively. The
TKI resistance-conferring T790M mutation in exon 20 was
detected in four patients (cases 1, 4, 11, and 15) after
treatment failure, and was also detected before treatment
initiation in case 4. We also detected a large number of CNV
candidates in the patients (cases 1-10) for whom control
specimens were available (Table I). MET amplification,
another common mechanism of EGFR-TKI resistance, was
detected in two patients (cases 2 and 8) (Table I).

Comparison of WES data for tumor specimens obtained
before EGFR-TKI treatment and after development of
resistance in cases 1 to 4 allowed the identification of
genomic alterations acquired during treatment. The number
of de novo SNVs detected in cases 1 and 2 was high (117
and 50 genes, respectively), whereas that in cases 3 and 4
was low (0 and 1 gene, respectively) (Table I). In case 4, the
T790M mutation was already present before treatment onset.
The number of de novo indels in cases 1 to 4 was relatively
low at 2 to 7, and none of these indels was present in more
than one of these patients [an indel in zinc finger and SCAN
domain containing 18 (ZSCAN18) was detected in cases 3
and 8] (Table I). The number of CNV candidate regions was
especially large in case 2, with this patient also being
positive for MET amplification (Table I). 

For cases 5 to 10, in which cancer specimens obtained
after the development of EGFR-TKI resistance were
compared with normal WBC samples to identify genomic
alterations acquired before treatment failure, the number of
genomic alterations also varied. The numbers of de novo
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SNVs and indels in case 8 were high (182 and 10 genes,
respectively), with the number of genomic alterations
identified in the other cases being low (0-26 SNVs and 0-3
indels) (Table I). The number of genes located in CNV
regions was also high in case 8 (1,109 genes) and included
MET (Table I). 

The variable mutational load and our relatively small
sample size made it difficult to identify candidate genes
that might be the cause of EGFR-TKI resistance with
statistical significance. We, therefore, referred to previous
studies that analyzed mutations in EGFR-TKI-resistant
tumor specimens (36, 37) in order to identify overlapping
mutated genes among the studies and examine similarity in
variability of mutational load. Although both previous
studies lacked EGFR-TKI-sensitive specimens as controls,
they detected a variable mutational load among the cases,
and some of the genes with SNVs overlapped with those in
our data set.

The T790M secondary mutation of EGFR or MET
amplification were identified in cases 1, 2, and 8, with
these patients having a high mutational load, suggesting
that these frequent EGFR-TKI resistance mutations are
acquired together with a large number of additional
genomic alterations. Gene ontology analysis of genes
affected by SNVs in cases 1 and 2 with the Database for
Annotation, Visualization, and Integrated Discovery tool
(38) identified terms such as “Cell adhesion” and
“Pathways in cancer”. With regard to the relation between
mutational load and duration of EGFR-TKI treatment, for
cases with a high mutational load (≥25 de novo SNVs;

cases 1, 2, 8, and 9) the number of SNVs tended to be
positively correlated with the duration of TKI treatment
(r=0.99) (Figure 2). In contrast, other cases continued to
show a low mutational load even after long-term TKI
treatment (>500 days).
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Figure 2. Duration of epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor (TKI) treatment and mutational load. The number of de
novo single-nucleotide variations (SNVs) and the duration of EGFR-TKI
treatment for cases 1 to 10 are shown in a scatter plot. Cases with a high
mutational load are indicated by triangles (≥25 de novo SNVs; cases 1,
2, 8, and 9) and the number of de novo SNVs was positively correlated
with the duration of TKI treatment (r=0.99). On the other hand, cases
with a low mutational load are indicated by circles (≤2 de novo SNVs;
cases 3-7 and 10) and showed various durations of TKI treatment.

Figure 1. Mutational signatures. The number of single-nucleotide variations (SNVs), including synonymous substitutions, in tumors of the study
patients is plotted. The most frequent base substitution was C-to-T (G-to-A) in all 15 cases, and the second most frequent mutation was A-to-G (T-
to-C) with the exception of the tyrosine kinase inhibitor(TKI)-resistant (TR) tumors of cases 1 and 8. TS: TKI-sensitive. 



Discussion

EGFR-TKI resistance is a pressing clinical problem in the
treatment of NSCLC, with the identification of resistance
mechanisms being essential for the development of new
strategies to overcome treatment failure. The next generation
of EGFR-TKIs and specific antibodies to related molecules
are under development (39-41), but further characterization
of the mechanisms of EGFR-TKI resistance is needed. In the
present study, we performed WES on clinical specimens of
patients with NSCLC who underwent a second biopsy after
failure of EGFR-TKI treatment. We identified de novo
genomic alterations acquired during EGFR-TKI treatment by
comparing these WES data with those obtained for tumor
specimens collected before TKI treatment or for WBC
samples. 

The mutational signatures of the cancer specimens showed
several similarities and differences. The predominant base
substitution was C-to-T (G-to-A), with the C-to-A (G-to-T)
mutation, which is prominent in smoking-associated cancer
(1), being relatively infrequent in all cases. However, both
C-to-T and C-to-A mutation frequencies increased during
EGFR-TKI treatment in cases 1 and 2, which acquired the
T790M mutation of EGFR and MET amplification,
respectively. These mutation frequencies did not change
substantially during EGFR-TKI treatment in cases 3 and 4,
suggesting that a specific endogenous or exogenous stressor
that induces C-to-T and C-to-A mutations might be
associated with these common TKI resistance mechanisms. 

The frequencies of genomic alterations varied among
cases, with the T790M mutation of EGFR and MET
amplification occurring together with a large number of other
mutations. Given the high frequency of these EGFR-TKI
resistance mutations, it might be expected that they occur
preferentially without multiple other mutations during
EGFR-TKI treatment. However, we identified multiple
mutations in addition to T790M of EGFR or MET
amplification in two cases (cases 1 and 2), whereas fewer
mutations were detected in patients who did not develop
these common resistance mechanisms during EGFR-TKI
treatment (cases 3 and 4). 

Nivolumab, an antibody to the programmed cell death-1
immune-checkpoint protein, is a recent breakthrough in
NSCLC therapy, with clinical studies having suggested that
both former and current smokers respond well to this agent
(42). One potential explanation for this latter finding is that
smoking-associated lung cancer is associated with a high
mutational load that may lead to the production of a greater
number of tumor neoantigens and increased tumor
immunogenicity. In the present study, we found that the
mutational load differed among patients with various
mechanisms of TKI resistance. Cases 1 and 2, for example,
which acquired the T790M mutation of EGFR and MET

amplification, respectively, showed a high mutational load,
whereas cases 3 and 4, for which a well-characterized
mechanism of TKI resistance was not identified, had a low
mutational load. The efficacy of nivolumab for patients
with NSCLC who have experienced EGFR-TKI treatment
failure might thus differ depending on the mechanism of
TKI resistance. Among cases 11 to 15, however, for which
only cancer specimens obtained after the development of
EGFR-TKI resistance were available, the number of SNVs
in cases 11 and 15, which were positive for the T790M
mutation of EGFR, was not substantially higher than that
in the cases without this mutation. Although we were not
able to identify de novo mutations acquired during EGFR-
TKI treatment for cases 11 to 15 because of the lack of
control specimens, these results suggest that the T790M
mutation might not always be associated with a high
mutational load, as in cases 1 and 2. A larger patient
population will thus be necessary to reveal statistically
significant associations among genomic alterations acquired
during EGFR-TKI treatment. Another limitation of our
study is the variability in sampling sites. Most of the cancer
specimens obtained after failure of EGFR-TKI treatment
comprised pleural effusion and differed from those obtained
before treatment. It is possible that the type of biopsy
specimen might affect the accuracy of mutation detection.
The adoption of strict sampling criteria is thus warranted
in future studies.

Our WES-based study has, thus, identified somatic
mutations acquired during EGFR-TKI treatment and revealed
a variable mutational load among patients. A high mutational
load was preferentially identified in patients with common
EGFR-TKI resistance mechanisms including the T790M
mutation of EGFR and MET amplification. Furthermore,
among those tumors with a high mutational load, C-to-T and
C-to-A mutation frequencies increased during EGFR-TKI
treatment. Our data will serve as an important resource for
future studies and may facilitate further efforts to identify
novel mechanisms of EGFR-TKI resistance and improve
therapeutic options for patients with NSCLC.
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