
Abstract. Integrins are cell-matrix adhesion molecules
providing both mechanical engagement of cell to extracellular
matrix, and generation of cellular signals that are implicated in
cancer malignancies. The concept that integrins play important
roles in cell survival, proliferation, motility, differentiation, and
ensuring appropriate cell localization, leads to the hypothesis
that inhibition of certain integrins would benefit cancer therapy.
In lung cancer, integrins αv, α5, β1, β3, and β5 have been
shown to augment survival and metastatic potential of cancer
cells. This review presents data suggesting integrins as
molecular targets for anti-cancer approaches, and the
mechanisms through which integrins confer resistance of lung
cancer to chemotherapeutics and metastasis. The better
understanding of these key molecules may benefit the discovery
of anti-cancer drugs and strategies.    

Lung cancer is, by far, one of the most common human cancers
causing nearly 1 in 5 cancer-related mortalities worldwide. Its
incidence and mortality have been continuously growing since
the 1930s. According to the International Agency for Research
on Cancer, more than 1.8 million people were diagnosed and
over 1.5 million people died from lung cancer, worldwide (1).
Generally, lung cancer can be classified as non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC). Accounting
for approximately 80-85% of all lung cancer cases, NSCLC can
be further categorized into adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma, which differ with regard to
treatment strategy and clinical outcome (2). Regarding their
prognosis, there are differences in terms of the rate of 5-year
survival; SCLC has an overall (all stages combined) 5-year
survival rate about 6% and NSCLC approximately 18%.
Importantly, the stage of lung cancer referring to their
dissemination is critical for the prognosis. Early-stage NSCLC,
with no evidence of cancer metastasis, has a 5-year survival rate
of nearly 50%, while late stage metastatic NSCLC has only 1-
2%. Together with other evidence, it is well known that the key
factor determining the success of lung cancer management is
whether the cancer has metastasized or not. While the primary
tumor of lung can be completely managed by surgery, the
disseminated cancers at late stages are very difficult to be
eliminated. Chemotherapies and other drugs, like targeted
therapies, are being continuously developed for the treatment of
metastatic lung cancer. Despite the variety offered, most of them
fail to completely cure cancer. At present, lung cancer is
accepted as one of the most aggressive malignancies, with only
10-15% 5-year survival (3). Moreover, poor survival of lung
cancer patients is largely contributed to patients being diagnosed
at a metastatic stage and more than half of patients having distant
metastases. The understanding of the fundamental basis of key
regulatory mediators of cancer metastasis could be useful for the
discovery of novel therapeutic targets that will provide more
precise and effective therapeutic approaches.

Integrins

Integrins are transmembrane proteins functioning as cell
surface protein receptors that control cell adhesion to
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extracellular matrix (ECM) and provide mechanical adhesion
by linking cytoskeletal actins to ECM molecules. Besides,
integrins function biochemically by sensing the appropriate
cell embeds or contact to their environment. The integrin-
ECM component interactions initiate signal transduction
pathways regulating several fundamental activities of the cells,
including cell proliferation, differentiation, and movement. In
addition, the firm engagement of integrin to ECM components
ensures the correct location and appropriate cell adhesion
resulting in the generation of cell survival signals (4). 

In summary, the two main functions of integrins are
mechanical attachment of the cell to the ECM and initiation of
signal transduction pathways. Basically, if the cell to ECM
adhesion is appropriate and firm, ligand binding to integrins will
transmit fundamental signals of cell survival. These signals are
of importance for metastasis of cancer cells, as the lack of cell-
ECM adhesion causes the withdrawal of these survival signals
resulting in detachment-induced apoptosis termed “anoikis”.
Escaping from anoikis has been long recognized as one key
mechanism rendering success in metastasis, and certain types of
integrins were demonstrated to help cancer cells resist anoikis
(5). The integrin family consists of alpha (α) and beta (β)
subtypes. These alpha and beta subtypes of integrins form
heterodimers at cell membrane. So far, at least 24 distinct
integrin heterodimers have been identified in humans as a
consequence of paring interaction of 18 α- and 8 β-subunits. The
binding of integrins to their ligands in ECM is through the
recognition of the specific arginine-glycine-aspartic acid (RGD)
sequence. Later on, EILDV and REDV sequences have also
been reported to mediate such interactions (6). Evidence has
suggested that each specific heterodimer provides a unique
pattern of cell signaling, as specific pair of integrins
preferentially binds to different ligands of ECM. For instance,
the α4β1 integrins bind to EILDV and REDV sequences in
fibronectin, while a5β1 integrins recognize the RGD sequence
(7). The integrin-ligand engagement senses extracellular the
extracellular environment to trigger cellular responses, including
cell survival, division, migration, and invasion. Like adherent
normal cells, lung cancer and other solid tumor cells require the
firm engagement of integrins to ECM component in providing
fundamental survival signals, and in the detached cells lacking
such integrin-mediated signals, cancer cells will undergo anoikis.

Integrin signaling can be modulated by cell stress as well
as in response to the signals from the cellular
microenvironment. Nitric oxide (NO), an important mediator
of cellular behaviors, was found to increase integrin αv and
β1 in NSCLC cells via protein kinase G (PKG)/protein kinase
B (Akt)-dependent mechanism (8). In response to chemothera-
peutic drug, we have demonstrated that treatment of NSCLC
cells with sub-toxic concentrations of cisplatin exhibited an
alteration of integrin signaling that enhances filopodia
formation of the cells and induces cell migration. In such a
case, cisplatin could increase the cellular levels of integrin α4,

αv, β1, and β5, while integrins α5 and β3 were not altered.
Consistent with previous reports, integrin α4, αv, β1, and β5
were shown to increase motility of cancer cells (9).  

Basic Structure of Alpha and Beta Integrins 

Integrins consist 18 α- and 8 β-subunits that pair and
incorporate into 24 different heterodimers. The integrin dimers
bind to ECM components such as collagen, fibronectin,
fibrinogen, laminin, and vitronectin as their ligands. The
integrins have a large extracellular domain with several
subdomains of α and β subunits that interact with ECM
ligands. Also, the protein contains a transmembrane domain
and a short cytoplasmic domain which interacts with the
cytoskeleton and plays central roles in signal transduction (10). 

α subunit consists of an extracellular domain of seven-
bladed β-propeller head domain, a thigh domain and two calf
domains (calf 1 and calf 2), and αI-domain containing around
200 amino-acids which is inserted between the β-propeller
blade 2 and 3. The αI-domain contains a metal ion-dependent
adhesion site (MIDAS) involved in ligand binding. On the
other hand, the β subunit comprises of a plexin-sempahorin-
integrin (PSI) domain, a hybrid domain, an I-like domain (βI)
which is inserted in the hybrid domain and is homologous to
αI-domain of the α subunit, 4 epidermal growth factor (EGF)
repeats (EGF1-4), and β tail domain (Figure 1A) (11).

During the cell adherence to ECM, activation of integrin
is controlled by bidirectional signals including outside-in
signal where extracellular ligand interaction activates integrin
receptor by separating the integrin cytoplasmic domain
triggering the intracellular signaling molecules and “inside-
out” signal where signals from inside the cell activate the
integrin for binding to the extracellular ligands (10). In detail,
the bent conformation (resting stage of integrin) of integrin
has low affinity to the ligand and the transmembrane domains
are close with cytoplasmic domains by the salt bridge. Inside-
out signaling involves the intracellular activators talin and
kindlin that bind to the β-subunit leading to change of
integrin conformation to the extend conformation (active
conformation) with high ligand binding affinity. 

For outside-in signaling, the integrins bind to the various
extracellular ligands such as fibronectin, collagen, and laminin
leading to the conformational change that induces focal
adhesion complex formation at the integrin cytoplasmic tail
that connects integrin to cytoskeletal proteins and regulates
several cellular signals that control cell adhesion, survival,
proliferation, differentiation, and motility (Figure 1B) (10).

Integrin and Cancers

It has been hypothesized that integrins could control several
aggressive behaviors of cancer cells. According to the fact that
cancer cells require strong survival as well as proliferative

ANTICANCER RESEARCH 39: 541-548 (2019)

542



signals for which integrins are known to be very essential,
these unique protein receptors have garnered increase attention
as they may be promising targets for anti-cancer approaches.
Regarding cell signaling and protein expression, the
engagement of integrins and their ECM ligands is critical for
gene expression and a variety of biological processes. The
extracellular and intracellular signaling of integrin is important
for the regulation of cell functions such as adhesion,

migration, growth, differentiation, survival, and apoptosis and
plays a crucial role in pathological processes which lead to
migration and tumor progression (12). Regarding cell
migration and invasion, integrins are a major family of
migration-promoting receptors that act as the feet of a
migrating cell by supporting adhesion to the extracellular
matrix through the link with intracellular actin filaments.
Integrin β1, β3, αv and α5 play a major role in cancer
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Figure 1. Integrin structure. (A) Domain structure of α- and β-subunits; (B) Schematic illustration of “Outside-in” and “Inside-out” integrin
signaling.



metastasis and survival of cancer patients. A variety of
integrins can be found in many cancers such melanoma (13),
breast carcinoma (14), prostate (15), pancreatic (16) and lung
cancer (17). Moreover, several receptor tyrosine kinases that
enhance survival and growth of cancer cells such vascular
endothelial growth factor receptor 2 (VEGFR2), epidermal
growth factor receptor (EGFR) and platelet-derived growth
factor receptor (PDGFR) were shown to be linked with
integrin signaling (18).

Integrins are well-known mediators of survival cell signals
including the phosphatidylinositol 3-kinase (PI3-K)/ Protein
kinase B (Akt) pathway, the Mitogen-Activated Protein Kinase
(MAPK) /Extracellular Regulated Kinase (Erk) pathway,
Stress-Activated MAP Kinases (SAPKs), and c-Jun N-
terminal kinase (JNK) (19). It is also known that integrins are
non-kinase receptors, so the transduction of mentioned signals
requires kinase partners. Integrin-mediated intracellular
signaling is previously shown to depend on the recruitment
and function of focal adhesion kinase (FAK) (20). FAK, a
non-receptor protein tyrosine kinase that is localized in focal
adhesions, is a ubiquitously expressed 125-kDa cytoplasmic
tyrosine kinase that regulates migration and proliferation. FAK
can be activated by integrin, G-protein-coupled receptors or
growth factors-linked stimuli (20). In addition, integrin-
regulated FAK-Src signaling allows downstream activation of
multiple intracellular signaling pathways, including the
PI3K/Akt and MAPK/Erk pathways. Akt is a serine/threonine-
specific protein kinase, which is activated by PI3K. Akt is a
key regulator of signaling and induction of metastasis (21).
Besides, integrin could interact with other adapter proteins and
kinases, including p130CAS, Grb 2, and paxillin, resulting in
cell survival and movement (22). Integrin engagement to ECM
molecule was shown to be directly mediated by Akt activation
via PI3K signaling through the direct recruitment of PI3K to
integrin subunit (23). The activation of MAPK/Erk pathways
is related to promotion of tumor progression, cell survival and
proliferation (24). JNK induces phosphorylation of paxillin, a
component of focal adhesions. The integrin-mediated
activation of the FAK–JNK pathway is necessary for
controlling cell cycle (25). FAK acts as a phosphorylation-
regulated scaffold to recruit Src to focal adhesions. Src
phosphorylates, the adaptor protein p130 CRK-associated
substrate (p130CAS) and paxillin, the Crk–DOCK180
complex, and thereby results in the activation of Rac which is
involved in cell migration (12). This signal transduction
pathway leads to the regulation of cancer cell migration and
cell invasion (26). The activation of FAK principally initiated
by integrin engagement to ECMs and also by growth factor
receptors enables regulation of cell survival, proliferation,
migration, invasion, progression and metastasis in relation to
cancer development. Subsequently, the autophosphorylation of
FAK on Tyr397 mediates high affinity binding of the Src
homology 2 (SH2) domain of Src kinase (27). FAK/Src

complex empowers tyrosine phosphorylation cascades to
modulate versatile signal pathways and improve cell motility.
For example, FAK modulates endophilin A2 phosphorylation
by Src or PI3K-AKT signaling in cancer stem cells. In
endothelial cells, vascular endothelial growth factor-A (VEGF-
A)/VEGF or angiopoietin-1 signaling regulates FAK-mediated
PI3K/AKT activation to promote migration, sprouting, and
angiogenesis. FAK also regulates the expression of growth
factors or cytokines in tumor-associated macrophages to
facilitate cancer progression. In response to lysyl oxidase-like
2 (LOXL2) which is important for stimulation tumorigenesis,
FAK affects the α-smooth muscle actin (α-SMA) expression
and AKT signaling to control cell invasion, metastasis,
angiogenesis, anti-apoptosis, and proliferation of cancer-
associated fibroblasts (28). Alternatively, evidences have
pointed out that Src can also interacts with the cytoplasmic
domain of integrin at β subunits and generates survival signal
by activating FAK (29).

Integrins and Survival of Lung Cancer

Being one of the hallmarks of cancer, the spread of the deadly
cells from one site to others does not only reflect the
progression of the disease but also contributes to the poor
prognosis as well. The metastatic behavior of lung cancer cells
is enhanced when the metastatic cascade is activated (26).
Subsequently, epithelial cells of the primary tumor undergo
Epithelial–Mesenchymal Transition (EMT). Afterwards, they
invade through ECM and stromal cell layers by the facilitation
of proteinases. The tumor cells intravasate into the blood
vessels of the tumor or nearby. Thereafter, they are carried
through the vasculature and arrested at distant sites. The cells
then extravasate into the distant tissues. The extravasated
tumor cells can survive at the metastatic sites and form
metastatic colonization, where they may grow as a secondary
tumor. Based on the above, the therapeutic approach can have
three targets, first the induction of apoptosis in primary tumor,
second induction of apoptosis in the metastasis tumor and
third, inhibition of various steps of metastasis. Finally, the
therapeutic approach should be specific for cancer without
causing damage to non-cancer cells and also targeting
aggressive cancer cells. When considering the three critical
factors, integrins may play a role in all of them. There is
evidence that in lung cancer integrins play an important role
in metastasis. A recent study has demonstrated that in NSCLC,
integrin α11 and β1 can augment metastasis potential and
increase tumorigenicity (30). Furthermore, integrin α11 was
shown to up-regulate IGF2 expression in fibroblasts and
thereby increase ability of NSCLC cells to form new tumors
(31). Integrin α5β1 was shown to facilitate cancer cell
invasion and enhance EGFR signaling (32). In association
with EGFR signaling, integrin β1 was shown to mediate
erlotinib resistance in lung cancer by activating Src/Akt-driven
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bypass signaling (33). In detail, erlotinib is a selective kinase
inhibitor that exhibits good efficacy in NSCLC having EGFR-
activating mutations. The development of erlotinib resistance
occurs via the activation of the Src/Akt signaling through the
activity of integrin β1 (33). As augmentation of Akt related
survival is linked with resistance to chemotherapeutic and
targeted therapy, the increase of integrin β1-associated lung
cancer drug resistance was frequently reported. In NSCLC,
the increase in the level of integrin β1 is shown to associate
with resistance to Gefitinib (34). Likewise, integrin α2β1 is
shown to cause resistance to doxorubicin in lung cancer (35).
Kaplan-Meyer survival analysis shows that integrin αvβ6 is
related to poor prognosis of NSCLC patients (36). The
mechanistic explaining the prognostic value of integrin αvβ6
on NSCLC involves its ability to enhance TGFβ activity in
cancer cells (37).

Integrins and Other Cancers

Integrins have been shown to be a dominant factor in
enhancing cancer aggressiveness. High expression of integrin
αv and β3 has been shown to closely associate with bone
metastasis and tissue remodeling in prostate cancer (15).
Besides, integrin αv and β3 overexpression in prostate
cancer tightly relates to angiogenesis and tumor metastasis
potentials (38). Moreover, integrin αv and β3 facilitates bone
remodeling that results in bone metastasis by mediating
adhesion and migration via vitronectin (39). In esophageal
carcinomas, the integrin α6 has been shown to link with
tumor invasion (40). For pancreatic cancer, integrins α2β1,
α5β1 and αvβ5 have been shown to mediate cancer cell
adhesion to the ECM components fibronectin, laminin,
collagen, and vitronectin, respectively (41). These integrin
engagements are involved in cell proliferation and essential
for cancer invasion.

Integrins in Anticancer Therapy

According to the fact that integrins are key molecules
contributing to cancer progression and metastasis, attempts
are being made in order to develop integrin-targeting anti-
cancer drugs. Angiogenesis is an essential factor for tumor
progression and metastasis. Integrins play a key role in the
regulation of the process of tumor angiogenesis which
consists of basement membrane degradation, endothelial cell
migration, proliferation, and stabilization (42). Integrins
αvβ3 and αvβ5, which are not usually expressed in epithelial
cells, have been found to be important regulators of the
process of tumor angiogenesis, (43). Inhibition of the αvβ3
and αvβ5 binding with ECM ligands has been targeted for
blocking endothelial cell-mediated angiogenesis and tumor
metastasis. Therefore, integrin blocking agents have become
attractive mediators for therapeutic targeted therapy.

Currently, several integrin antagonists are developed for
anticancer therapy. Cilengitide, an arginine-glycine-aspartic acid
(RGD) pentapeptide of αvβ3 and αvβ5 integrins inhibitor, is
progressed in phase II and III clinical trials in recurrent
glioblastoma (44). Volociximab, a chimeric human IgG4
antibody inhibitor of α5β1, is evaluated in phase II clinical trials
in metastatic melanoma, renal cell carcinoma and NSCLC (45).

Potential Compounds Targeting Integrins 
for Anti-cancer Approaches

Since integrins have been shown to be implicated in cancer
progression and metastasis, several active compounds
targeting the integrin molecules are under investigation for
efficacy, as well as safety in pre-clinical and clinical trials.
Excluding specific antibodies against integrins, several
natural product compounds have exhibited a desirable effect
in modulating integrin signaling. Certain integrins have been
shown to associate with the aggressive phenotypes of cancer
and suppression of such integrins would benefit
chemoprevention and cancer therapy.

Ouabain, a biologically active compound and plant-derived
cardioactive glycoside from the seeds of Strophanthus gratus
also recognized as a human hormone, has been shown to affect
integrin expression in human lung cancer cells. Treatment of
the lung cancer cells with non-toxic concentrations of ouabain
resulted in dramatic decrease of the cellular levels of integrin
α4, α5, αv, β3 and β4, with no significant effect on integrin
β1 and β4. Such integrin switch caused by ouabain suppressed
the migratory activity of lung cancer cells (46). Likewise, we
previously found that α-Lipoic acid sensitized lung cancer cells
to chemotherapeutic agents and anoikis by decreasing the
levels of integrin β1 and β3. The underlying mechanism of
modulation of the expression of such integrins involves the
induction of intracellular superoxide anion (O2•–) and hydrogen
peroxide (H2O2) (47). Lectin from Morus alba Leaf has been
shown to enhance anoikis response in breast cancer cells via a
mechanism involving the disruption of fibronectin-integrin-
FAK signaling. Treatment of the MCF-7 cancer cells with this
lectin resulted in the depletion of integrin levels followed by
the decrease of active FAK and active Ras. As a consequence,
the lack of integrin-mediated cell survival signals sensitized the
cell to anoikis (48).

Curcumin, a bioactive compound from the rhizome
Curcuma longa, has been demonstrated to have a promising
anti-cancer activity (49). In terms of integrins, curcumin is
demonstrated to inhibit the function of α6β4 in mediating
breast cancer cell motility. The disruption of integrin
function caused a significant reduction in the activation of
Akt and thereby decreased the levels of the migration
promoting factor ENPP2 (50). In addition, curcumin is
shown to be down-regulate integrin αvβ3 that could benefit
to the treatment of erlotinib resistant colon cancer cells (51).
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Phloretin, a flavonoid bioactive compound found in fruits
such apples and strawberries, has several biological functions
such as anticancer activity (52), antibacterial activity (53) and
prevention of cardiovascular disease (54). αvβ3 integrin has
been shown to be overexpressed in osteoclasts and to play
important roles in osteoclast migration and activation.
Phloretin has been shown to suppresses paxillin induction in
receptor activator of nuclear factor κB ligand (RANKL)-
activated osteoclasts and in ovariectomized (OVX) epiphyseal
bone tissues, to reduce RANKL-stimulated resorptive activity
in osteoclasts, promote osteoclast apoptosis and to disrupt
αvβ3 integrin-c-Src-mediated actin cytoskeletal reorganization
responsible for bone resorption (55).

Gambogic acid, the major active ingredient of gamboge
which is extracted from the resin of Garciania hanburyi,
inhibits tumor progression in several cancers including breast
cancer (56), gastric cancer (57) and lung cancer (58).
Gambogic acid suppresses the epithelial-to-mesenchymal
transition (EMT) and nuclear factor-kappa B (NF-kappa B)
signaling pathway (59). Gambogic acid inhibits activation of
vascular endothelial growth factor receptor 2 (VEGFR2) and
downstream protein kinases including c-Src, FAK and AKT
(60). Gamboge acid could be developed as an anticancer agent.
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