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Temozolomide-resistant Glioblastoma Depends on HDAC6
Activity Through Regulation of DNA Mismatch Repair

GO WOON KIM!*, DONG HOON LEE!*, SOO-KEUN YEON!, YU HYUN JEON!,
JUNG YOO!, SANG WOO LEE! and SO HEE KWON! 2

ICollege of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea;
’Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea

Abstract. Background/Aim: Histone deacetylase 6 (HDAC6)
is considered as one of the most promising targets in drug
development for cancer therapy. Drug resistance is a major
cause of treatment failure in many cancers including
glioblastoma (GBM), the most lethal malignant tumor. The
role of HDAC6 in GBM resistance and its underlying
mechanisms have not been well elucidated. Herein, we
investigated the function of HDAC6 in modulating GBM
resistance. Materials and Methods: The anticancer effects of
Sfour structurally distinct selective HDACG6 inhibitors were
addressed using western blot, flow cytometry, CCK-8 assay,
and CI in temozolomide (TMZ)-resistant GBM cells. Results:
We showed that HDAC6-selecitve inhibitors block activation
of the EGFR and p53 pathways in TMZ-resistant GBM cells.
Importantly, the inhibition of HDACG6 correlates with
increased levels of MSH2 and MSHG6, key DNA mismatch
repair proteins, in TMZ-resistant GBM cells. In addition to the
MSH, HDACG inhibitors decrease MGMT expression in TMZ-
resistant GBM cells. Furthermore, HDACG6 inhibitors increase
TMZ sensitivity and efficiently induce apoptosis in TMZ-
resistant GBM cells. Conclusion: Selective inhibition of
HDAC6 may be a promising strategy for the treatment of
TMZ-resistant GBM.

Glioblastoma (GBM), also known as World Health
Organization grade IV glioma or glioblastoma multiforme,
is the most common and lethal type of primary brain cancer
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(1, 2). With the introduction of combined chemotherapy and
radiation therapy, the median survival time has increased to
about 15 months (3). Temozolomide (TMZ) was used for the
standard treatment of GBM for over a decade, irrespective
of 0%-methylguanine (O%-MG)-DNA methyltransferase
(MGMT) status (4, 5). However, almost all patients treated
with TMZ eventually develop acquired resistance and tumor
recurrence.

Several factors involved in epigenetic and genetic
mechanisms have been associated with TMZ resistance. The
mechanisms of resistance include increased DNA repair
activity, overexpression of murine double minute 2 (MDM?2),
epidermal growth factor receptor (EGFR), and galetin-1; and
mutations or alterations of phosphatase, tensin homolog
(PTEN) and p53 (6). The MGMT DNA repair enzyme and
DNA mismatch repair (MMR) system are the major known
mechanisms of TMZ resistance in GBM (7-11). MGMT is a
DNA repair protein, which removes the cytotoxic O%-MG
DNA lesions made by TMZ, and high levels of MGMT
expression are associated with TMZ resistance in GBM cells
(8). The DNA MMR pathway is a system that corrects errors
of nucleotide base mismatches made during DNA replication
(12). Although there are six MutS homologs (MSH), MSH2
plays the major role in mismatch recognition, while other
homologs such as MSH3 and MSH6 enhance the specificity
of such recognition (13). A defective MMR system caused
by mutations in MMR protein complexes leads to failure to
recognize and repair O°-MG adducts generated by TMZ,
thereby making TMZ less effective (6, 14). Thus, strategies
to rescue the effect of the MMR system need to improve the
effect of TMZ and to overcome TMZ resistance.

Since the acetylation status of histone proteins and non-
histone proteins affects gene expression and protein activity
in various biological processes, histone deacetylase (HDAC)
inhibitors have emerged as a potential therapeutic approach
to cancer (15, 16). However, because more than 11 classical
HDAC:Ss (class I, IT and IV HDAC:S) exist in human cells, the
use of HDAC inhibitors targeting only a few types of HDACs
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for treatment of cancer or experimental studies is frequently
more effective, with fewer side-effects (17). Class IIb
HDACSG6 has a unique structure (18). HDAC6 not only can
function as a protein deacetylase, but also interacts with other
regulatory proteins through ubiquitination and acetylation-
related mechanisms (19). HDAC6 is associated with cell
sensitivity to drugs and emerging resistance during
chemotherapy (20, 21). HDACS6 is overexpressed in GMB
cell lines and tissues (21, 22), the overexpression of HDAC6
promotes GBM proliferation, and confers resistance to TMZ
(21). Interestingly, HDAC6 and HDAC10 have a role in DNA
MMR (23, 24). HDAC6 regulates MutSa by deacetylating
and ubiquitinating MSH?2 for degradation (24). HDAC6
significantly decreases sensitivity to DNA-damaging agents
and decreases MMR activities by down-regulating MSH2.
Additionally, MutSa inactivation is associated with TMZ
resistance in GBM (9, 11). However, little is known on the
relevance of HDAC6, MGMT, and the MMR system to the
development of TMZ resistance in GBM.

To shed more light on this issue, we investigated the
functions of HDAC6 in GBM resistance using four
structurally distinct HDAC6 selective inhibitors in TMZ-
sensitive and TMZ-resistant GBM cells. Therefore, our
findings provide a scientific rationale for targeting HDAC6
to overcome chemoresistance in TMZ-resistant GBM.

Materials and Methods

Cell culture. Human glioblastoma cell lines U87 (wtp53, no basal
MGMT-TMZ sensitive cell), and T98G (mutp53, high basal MGMT-
TMZ resistant cell) were purchased from the American Type Culture
Collection (Manassas, VA, USA). Cells were cultured in Dulbecco’s
modified Eagle’s medium (Gibco; Thermo Fisher Scientific, Inc.,
Waltham, MA, USA) containing 10% fetal bovine serum (FBS;
HyClone; GE Healthcare, Logan, UT, USA), 100 U/ml penicillin,
and 100 pg/ml streptomycin (Gibco; Thermo Fisher Scientific) in a
humidified atmosphere of 5% CO, and 95% air at 37°C.

Reagents. ACY-1215 (ricolinostat), CAY 10603, temozolomide, and
tubastatin A were purchased from Selleck Chemicals (Houston, TX,
USA). A452 (purity 99%) is a y-lactam-based HDAC®6 inhibitor
(25) and was kindly provided by Dr. Gyoonhee Han (Yonsei
University, Seoul, Republic of Korea).

Cell viability assay. Cell viability was assessed by measuring the
dye absorbance of a water-soluble tetrazolium salt WST-8 [Cell
Counting Kit (CCK)-8 kit, Dojindo Molecular Technologies,
Kumamoto, Japan] according to the manufacturer's protocol and
was performed as previously described (26). Cells were seeded in
triplicates at a density of 1.5x103 cells in 200 pl of medium in 96-
well plates. The drugs were added to the cells at the indicated
concentrations 24 h after seeding at 37°C for 72 h. The cells in each
well were pulsed with 20 ul of WST-8 for the final 3 h of a 72-h
incubation, and absorbance was then measured at 450 nm using a
multimode microplate reader (Tecan Group, Mannedorf,
Switzerland). Absorbance was normalized to that of the negative
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control (no DMSO vehicle) at each time interval. To analyze cell
viability, the percentage absorbance was calculated relative to
negative control cultures. The results from three independent
experiments performed in triplicate are presented.

Apoptosis assay. Apoptosis was assessed using Annexin
V/propidium iodide (PI) double staining according to the
manufacturer’s protocol (FITC Annexin V Apoptosis Detection Kit;
BD Biosciences, Franklin Lakes, NJ, USA), as previously described
(26). The cells were then analyzed using a flow cytometer and BD
FACSDiva software version 7 (both from BD Biosciences).

Western blot analysis. Cells grown and treated as indicated, were
collected, lysed, and separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE); western blotting
was performed as previously described (27). The blots were semi-
quantified using FusionCapt software version 16.08a (Viber
Lourmat Sté, Collégien, France). The protein expression levels were
semi-quantified relative to GADPH and the levels in the 0.1%
DMSO treated groups were set at 1. GADPH was used as a loading
control. The sources of the primary antibodies are available upon
the request.

Drug combination analysis. For combined drug analysis, a constant
ratio of TMZ and A452 or ACY-1215 was evaluated. Drug dilutions
and combinations were prepared in media immediately prior to use.
Cells (1.5x103/well) in 96-well plates were incubated with the drugs
for 72 h at 37°C. A CCK-8 assay was performed to determine cell
viability. Drug interactions were determined according to the
combination index (CI) method described by Chou (28); CI>1
implies antagonism, CI=1 is additive and CI<1 implies synergism.
CIs for the combination treatment groups were generated using
CalcuSyn software version 2.11 (Biosoft, Cambridge, UK). The
fraction affected (FA) was calculated from the percentage viability,
as follows: FA=(100 — percentage viability)/100.

Statistical analysis. Statistical analyses were performed with
GraphPad Prism software (version 7.0, Graphpad Software). Data
are presented as the means+standard deviation of three independent
experiments. Statistical differences were determined by one-way or
two-way analysis of variance (ANOVA) with post-hoc analysis
using Bonferroni's multiple comparison test. p<0.05 was considered
to indicate a statistically significant difference.

Results

HDACG6-selective inhibitor activates MMR pathways in
TMZ-resistant GBM cells but not in TMZ-sensitive cells.
Loss of DNA MMR proteins is associated with GBM
recurrence during TMZ treatment (29) and HDACG6 regulates
MSH2 protein stability via de-acetylation and ubiquinination
(24). Therefore, we assessed whether inhibition of HDAC6
could up-regulate MSH2 protein levels in GBM cells. To this
end, we examined the expression level of MSH2 in TMZ-
sensitive U87 and TMZ-resistant T98G GBM cells treated
with four structurally distinct HDAC6-selective inhibitors,
A452, ACY-1215, CAY 10603, and tubastatin A. A452 and
ACY-1215 resulted in slightly increased levels of MSH2
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Figure 1. HDACG6 inhibitor up-regulates MSH2 and MSH6 proteins in TMZ-resistant GBM cells but not in TMZ-sensitive GBM cells. (A) TMZ-resistant
T98G and (B) TMZ-sensitive US7 GBM cells were treated with 0.1% DMSO (control) or HDACG inhibitor at the indicated concentrations (0.1, 1, and
10 uM) for 24 h. Whole-cell lysates were subjected to immunoblotting with the indicated antibodies. Acetylation of H3 (Ace-H3) and a-tubulin (Ace-
a-tub) are markers for HDAC1 and HDACG inhibition, respectively. The protein expression levels were semi-quantified relative to GAPDH, and the
levels in the 0.1% DMSO-treated groups were set at 1. Levels of Ace-a-tub and Ace-H3 were semi-quantified relative to a-tub and H3, respectively;
GAPDH, a-tub and histone H3 were used as equal loading controls. ¥*p<0.05, **p<0.01, and ***p<0.001 vs. the DMSO control group.
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Figure 2. HDACG inhibitors lead to a pronounced inhibition of EGFR in both TMZ-resistant and TMZ-sensitive GBM cells. (A) TMZ-resistant T9SG
and (B) TMZ-sensitive US7 GBM cells were treated with 0.1% DMSO (control) or HDACG inhibitor at the indicated concentrations for 24 h. Whole-
cell lysates were subjected to immunoblotting with the indicated antibodies. Relative protein expression levels were semi-quantified by densitometric
analysis of the blots. pEGFR was semiquantified relative to EGFR. Levels of Ace-a-tub were semiquantified relative to a-tub; GAPDH and a-tub
were used as equal loading controls. *p<0.05, **p<0.01, and ***p<0.001 vs. the DMSO control group.

protein in TMZ-resistant T98G cells (Figure 1A). Previous
studies suggest that MSH6 stabilizes MSH2 by forming
MSH2-MSH6 heterodimers (30). Thus, we examined
whether HDAC6 inhibitors could up-regulate MSH6 protein
levels. In addition to MSH2, four HDACG6 inhibitors
substantially increased MSH6 levels in TMZ-resistant T98G
cells. In contrast, all tested HDAC6 inhibitors decreased the
levels of both MSH6 and, to a lesser extent, MSH2 proteins
in TMZ-sensitive U87 cells (Figure 1B). These results
indicate that selective inhibition of HDAC6 markedly
increases MSH protein levels in TMZ-resistant GBM cells,
but not in TMZ-sensitive GBM cells.
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Next, we investigated whether HDAC6 inhibitor affects
the expression of another DNA repair protein, MGMT,
related to DNA MMR and TMZ resistance. As shown in
Figure 1A, A452 and ACY-1215 reduced MGMT levels in
TMZ-resistant T98G cells with high basal MGMT
expression. On the other hand, TMZ-sensitive U87 cells with
no MGMT expression due to gene silencing by promoter
methylation appeared ubiquitinated MGMT, but not
unmodified MGMT. A452, ACY-1215 and CAY10603
slightly increased the levels of ubiquitinated MGMT. No
detectable alterations in MGMT protein level were observed
in TMZ-sensitive U87 cells treated with tubastatin A (Figure
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Figure 3. HDACG6 inhibitor differentially modulates p53 in both TMZ-resistant and TMZ-sensitive GBM cells. (A) TMZ-resistant T98G and (B) TMZ-
sensitive US7 GBM cells were treated with 0.1% DMSO (control) or HDACG inhibitor at the indicated concentrations for 24 h. Whole-cell lysates

were subjected to immunoblotting with the indicated antibodies. *p<0.05,

1B). Overall, this result indicates that HDAC6-selective
inhibitors modulate MGMT protein levels in TMZ-resistant
GBM cells, but not in TMZ-sensitive GBM cells.

HDACG6-selective inhibitor inactivates EGFR pathway by
destabilizing EGFR in GBM cells. Previous studies have
shown that EGFR plays a pivotal role in TMZ resistance (31)
and HDACS6 inhibitors inactivate the EGFR pathway (21).
To test whether HDACS6 inhibitors regulate EGFR in TMZ-
sensitive and TMZ-resistant GBM cells, we tested the
phosphorylation level of EGFR and total EGFR by western
blotting. A452, ACY-1215 and CAY 10603 destabilized
EGFR at higher concentrations in TMZ-sensitive U87 and
TMZ-resistant T98G GBM cells (Figure 2). Moreover,
inhibition of HDAC6 by these three HDAC6-selective
inhibitors decreased EGFR phosphorylation levels in both

**p<0.01, and ***p<0.001 vs. the DMSO control group.

GBM cells. This finding suggests that inhibition of HDAC6
controls the survival and chemoresistance of GBM cells via
destabilization of EGFR and inactivation of the EGFR
pathway.

HDACG6-selective inhibitor differentially modulates p53 by
up-regulating wild-type and down-regulating mutant p53 in
GBM cells. Previously, we reported that inhibition of
HDAC6 by A452 differentially modulates p53 by up-
regulating wtp53 and down-regulating mutp53 in cancer cells
(32). In the present study, we assessed whether HDAC6
altered the p53 signaling pathway in TMZ-sensitive and
TMZ-resistant GBM cells. Four tested HDAC6 inhibitors
robustly down-regulated mutp53 protein in TMZ-resistant
T98G cells in a dose-dependent manner (Figure 3A).
Conversely, A452 and CAY10603 slightly up-regulated
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wtp53 protein in TMZ-sensitive U87 cells (Figure 3B).
MDM2, a key negative regulator of p53, down-regulated in
GBM cells, independently of p53 and TMZ resistance status.

HDACG6-selective inhibitor sensitizes GBM cells to TMZ.
Among four tested HDACS6 inhibitors, we selected and used
for further study the two more effective HDAC6 inhibitors,
A452 and ACY-1215, based on MutSa and EGFR
destabilization result. Next, we examined the effects of the two
HDACS6 inhibitors, A452 and ACY-1215, on cell viability in
TMZ-sensitive and TMZ-resistant GBM cells. Cells were
cultured with an HDACS6 inhibitor for up to 72 h, and cell
viability was measured by CCK-8 assays. A452 and ACY-1215
resulted in a dose-dependent decrease in cell viability in both
TMZ-sensitive U87 and TMZ-resistant T98G GBM cells
(Figure 4). Next, we tested whether HDACG inhibitor enhanced
the antiproliferative effects of TMZ in TMZ-sensitive and
TMZ-resistant GBM cells. The combination of A452 with
TMZ augmented cell death compared with cultures treated with
TMZ alone in both cells (Figure 4). Similarly, the combination
of TMZ and ACY-1215 showed synergistic cytotoxicity.
Furthermore, the CI values, a quantitative measure of drug
interaction according to the Chou and Talalay method, were
evaluated (28). The CI for A452-TMZ and ACY-1215-TMZ in
both GBM cells was <1, indicating the synergistic effect of the
combination (Figure 4). In particular, A452 demonstrated
significant synergy in the TMZ-resistant T98G GBM cells
compared with TMZ-sensitive U87 GBM cells. The ACY-
1215-TMZ combination exhibited similar synergistic effects on
both GBM cells, albeit weaker synergy than the A452-TMZ
combination. This finding indicates that the HDAC6 inhibitor—
TMZ combination may be more efficient on TMZ-resistant
GBM cells with mutp53 and MGMT expression and that the
HDACS6 inhibitor may overcome TMZ resistance.
HDACG-selective inhibitor in combination with TMZ
synergistically increase apoptosis in TMZ-resistant GMB
cells. Selective inhibition of HDAC6 increased MMR
proteins in TMZ-resistant T98G cells, but not in TMZ-
sensitive U87 GBM cells. Therefore, we focused on T98G
cells which express MGMT and have mutated p53. To
investigate the mechanism of cell death in GBM cells
cultured with a combination of HDACS6 inhibitor and TMZ,
we evaluated their apoptotic effects. Cells treated with the
combination of TMZ and A452 or ACY-1215 had increased
levels of cleaved poly(ADP ribose) polymerase (PARP) and
of active caspase-3, which are apoptosis markers (Figure
5A). Furthermore, Annexin V/PI staining revealed that cell
apoptosis was significantly increased following combination
treatment of cells with TMZ and A452 or ACY-1215 (Figure
5B). Overall, our results suggest that combination treatment
with an HDACS6-selective inhibitor and TMZ triggers
apoptosis by activating caspase 3.
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Discussion

The ultimate hindrance to the clinical success of GBM
treatment is drug resistance causing high recurrence rate of
this cancer. HDACs, the most promising target in drug
development for cancer therapy, are known to be associated
with oncogenesis of GBM in various human GBM cell lines
(33). In this paper, we analyzed the effects of treatment of
HDAC®6-selective inhibitors in order to find potential
relationship between HDAC6 and GBM resistance. Thus, we
conducted further research into the detailed mechanism of
HDACS6 inhibition and the potential of combination of
treatment of HDAC6-selective inhibitor with TMZ, a widely
used chemotherapeutic drug.

We have shown the different impact of each HDAC6
inhibitor on GBM proliferation and resistance by differential
modulation of DNA MMR, EGFR, and p53 pathways. EGFR
targeting has been studied as a cancer treatment strategy.
Reducing EGFR protein levels as well as inhibiting EGFR
kinase activity is a pivotal strategy to block the oncogenic
effects of EGFR in cells. HDACG6 deacetylates the molecular
chaperone Hsp90, and the deacetylated active form of Hsp90,
regulates its chaperone activity for its client proteins, including
EGFR (34, 35). Thus, the use of HDAC6 inhibitors is another
strategy to down-regulate EGFR protein levels in cancer cells.
Overexpression of EGFR is also associated with
chemoresistance in GBM (31). In consistent with previous
results, EGFR expression was higher in TMZ-resistant GBM
cells than TMZ-sensitive GBM cells. First, we showed that
HDACS®6 inhibitors reduced the phosphorylation levels of EGFR
and total EGFR in both TMZ-sensitive and TMZ-resistant GBM
cells although the altered levels of EGFR were different. This
result suggests that selective inhibition of HDAC6 controls the
survival and chemoresistance of GBM cells by destabilizing
EGFR and inactivating the EGFR pathway.

Figure 4. Combined treatment of HDAC6 inhibitor and TMZ triggers
synergistic cytotoxicity. (A) TMZ-resistant T98G and (B) TMZ-sensitive
U87 GBM cells were treated with 0.1% DMSO (control) or the
indicated compounds alone or in combination for 72 h. Combination
treatments were then performed in cells maintaining a constant ratio
between the doses of TMZ and A452 or ACY-1215 and cell viability was
assessed at 72 h by CCK-8 assay. The combination index (CI) value and
the relative fraction affected (FA) were determined at each dose
combination (actual) and a simulation was run to estimate the CI values
and confidence intervals across the entire FA range (simulation). CI<I,
CI=1 and CI>1 indicate synergistic, additive and antagonistic effects,
respectively. Significance was determined by two-way analysis of
ANOVA with Bonferroni's post-hoc test to compare groups. *p<0.05,
**p<0.01, and ***p<0.001 vs. the DMSO control group; #p<0.05,
#p<0.01, and ™#p<0.001 vs. the HDACG inhibitor-treated groups;
3p<0.05 and $33p<0.001 vs. the TMZ-treated group.



Kim et al: HDAC6 Regulates MMR in TMZ-resistant GBM

A T98G (MGMT-proficient TMZ-resistant cells)

120 -
100 4 = T98G: A452 + TMZ
12 _
g 801 T \
09 ]
2 o X
a —
§ 40 - o 954 \H
o3 -HR'““‘
20 i e )
g 2
1] E T T T ]
a2 a4 as [+F-] 10
ctrl| 1 Bt
120 -
100 4{ = :
T98G: ACY-1215 + TMZ
— d 20
g 30
£ 601 15
=
]
> 40 1 S
20 . .z
0 e
e 12| 4]e|s | oz e as 10
ACY-1215 (uM)
B U87(MGMT-deficient TMZ-sensitive cells)
120 -
I
100 1 U8T: A452 + TMZ
12 _
£ 801 | e
E‘ 60‘ o5 | )
E )
§ 40 A o e \.\x'“‘-—\. ®
e
20 - 03 | 2 s -
0 -
B o T T T 1
L4 az a4 as 0F 10
Efect
120 -
100 1, I * T _ UBT: ACY-1215 + TMZ
L iz _
£ 80 iE I - -
S
E 60 - . sy ?
=
g 40 _ G 6 J
20 4 3
0+ R e s e
s |® @ |- sle az e 08 03 10
ACY-1215 (pM) TMZ (M) 5.25/12.5| 25 | 50 100 [200 Effect
TMZ (pM)

6737



ANTICANCER RESEARCH 39: 6731-6741 (2019)

A o 14 Jupaprrun 8 7 aprocass g
& Q‘g;\ $ %12 JaPaPRcioavage gé; 1 mhctcass
10 L&6 4 =
¥ & ot SV & 53] = Tz
S @ @ & & 2 i
L LN =2 - S
PR R GPT N P S GIN@ 25 1) 321
. 3 o | &Sy ]
e [ S EREDE -« ]
(116, 85 kDa) _— — -« CF 3 S I 2 P .
— oﬁ’ L & & A &
Pro-Cas 3 i P —— w bt ki
35 kDa “ ] mParerun i 1 mprocass i
C(LC ; — bl o :: mact-casd
-Las --- - $ ] i
(17, 19 kDa) N 5 5% .l
E. su 8 4
GAPDH . 25 o
(37 kDa) — = o ey g EE i
&£ 24
04
& & &
& N ®
B °§'_\\$ ‘&@ ‘_(;*
120 -
Live mEarly apoptosis mLate apoptosis
100 -
80 -

60 -

% of Cells

40 -

o HE
] $$$
20_ I I

© H
= =

control TMZ 500 uM A452 2 pyM

+TMZ

A452 ACY1215 2 pMACY1215

+TMZ

Figure 5. HDACG inhibitors in combination with TMZ synergistically increase apoptosis in TMZ-resistant T9S8G cells. (A) T98G cells were treated
with 0.1% DMSO (control), TMZ, A452, or ACY-1215, or in combination with these compounds for 24 h. Whole-cell lysates were subjected to
immunoblotting with the indicated antibodies. *p<0.05, **p<0.01, and ***p<0.001 vs. the DMSO control group. (B) TMZ-resistant T98G cells
were treated with 0.1% DMSO (control), TMZ, A452, or ACY-1215 or in combination with these compounds for 48 h. Cell death was assessed by
flow cytometry and Annexin V/PI staining (n=3). Significance was determined by two-way analysis of ANOVA with Bonferroni's post-hoc test to
compare groups. ¥p<0.05, **p<0.01, and ***p<0.001 vs. apoptotic cells in the DMSO control group; *p<0.01 and **p<0.001 vs. apoptotic cells
in the HDACG inhibitor-treated group; $3p<0.01 and $83p<0.001 vs. the TMZ-treated group.

Second, we demonstrated that four tested HDACO6
inhibitors robustly down-regulated mutp53 protein in TMZ-
resistant T98G cells. In contrast, A452 and CAY 10603 up-
regulated wtp53 protein in TMZ-sensitive U87 cells.
Although mutp53 is associated with resistance to TMZ and
most studied, the results have been mixed. Furthermore, p53
status was not always correlated with MGMT status in GBM
cell lines; TMZ-sensitive GBM cells (e.g., U887, A172)
possess wtp53 and p53 gene mutations were found in TMZ-
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resistant GBM cells (e.g., LN-18, T98G, U138) as well as
TMZ sensitive-GBM cells (e.g., U251, U373). Thus, these
data indicate that a mutation in the 7P53 gene does not seem
to be a primary indicator of resistance to TMZ (36). MDM2,
which is a p53-negative regulator related to resistant GBM
cell lines, decreased tumor size when down-regulated with
the antisense oligonucleotide (37). Interestingly, HDAC6
inhibitors caused decreased levels of MDM2 in both TMZ-
sensitive and TMZ-resistant GBM cells, independently of
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their p53 and TMZ resistance status. This finding indicates
that HDAC6-selective inhibitors may cause cell death by
reduction of hyperstable mutp53 as an oncogene.

Third, we found that HDACG6-selective inhibitor activates
MMR pathways in TMZ-resistant cells, but not in TMZ-
sensitive cells. In line with previous findings, HDACG6-
selective inhibitors increased the levels of MSH2 protein in
TMZ-resistant GBM cells. Zhang M et al. have reported that
HDAC6 interacts with MSH2 and MSH6, deacetylating
these MMR proteins. Subsequently, the deacetylated MSH?2
is degraded by proteasome, reducing DNA MMR activity
(24). However, they did not provide the evidence that
MSH6 protein stability can be directly regulated by
HDAC6. In our finding, HDAC6-selective inhibitors
significantly increased the protein levels of MSH6 as well
as MSH2 in TMZ-resistant GBM cells. In contrast, the
effect of HDACG6 inhibitor on activation of the MMR
pathway was not observed in TMZ-sensitive GBM cells,
probably because MSH2 and MSH6 are already highly
expressed in TMZ-sensitive cells. It has also been reported
that mutation of MSH6 occurs after TMZ treatment and
knockdown of MSH6 increases TMZ resistance in U251
GBM cells (38). In addition, the MSH6 mutation was
mostly found in recurrent GBM patients, but not in newly-
diagnosed GBM patients (39). Based on these findings,
MSH6 may play a crucial role in TMZ resistance in GBM.
Since our findings show that HDAC6 regulates MSH6
levels, HDAC6 inhibitor may be a potential therapeutic
agent to overcome TMZ resistance.

Thus, further work will be required to determine the
molecular mechanisms whereby HDAC6 regulates MSH6
stability.

Another DNA repair protein, MGMT, which is related to
DNA MMR and TMZ resistance, was reduced by treatment
with A452 and ACY-1215 in TMZ-resistant GBM cells.
These results are hopeful for overcoming TMZ-resistance
and, perhaps, suggest a possible utility of the inhibition of
HDACSO6 in combination with traditional chemotherapy for
GBM. Indeed, HDACS6 sensitized GBM cells to the inhibition
of TMZ-induced cell proliferation and the induction of
apoptosis, which occur as a result of the activation of
caspases and DNA MMR and the destabilization of EGFR
and p53 in TMZ-resistant GBM cells. Our findings indicate
that HDAC6-mediated destabilization of MutSa and
stabilization of MGMT may partly explain the oncogenic
function of HDAC6 in GBM resistance. Taken together, our
results suggest that selective inhibition of HDAC6 may be a
promising strategy for the treatment of GBM and overcoming
TMZ resistance.
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