
Abstract. Background/Aim: The aim of this study was to
examine whether the Wnt/β-catenin signal activation is a
cause of radioresistance in colon cancer by assessing the
β-catenin localization and its correlation with cancer stem
cells (CSCs). Materials and Methods: The nuclear levels of
β-catenin, the hallmark of Wnt activation, were analyzed in
HCT116 and SW480 cells by immunohistochemistry, before
and after irradiation. Further, we assessed CSC
populations by staining for aldehyde dehydrogenase-1
(ALDH1) and CD44. Results: β-catenin was localized
predominantly in the nucleus and plasma membrane in
SW480 and HCT116 cells, respectively. Compared to
HCT116 cells, SW480 cells displayed higher Wnt
activation. At 24 h after irradiation, most of the DSBs in
SW480 cells were repaired, but were still present in
HCT116 cells. Additionally, compared to HCT116 cells, a
significantly higher proportion of SW480 cells were
ALDH1- and CD44-positive. Conclusion: Colon cancers
with nuclear β-catenin accumulation demonstrated greater
radio-resistance with a higher number of CSCs.

There are two Wnt/β-catenin signaling pathways: the canonical
pathway and the non-canonical pathway (1, 2). β-catenin is the
key molecule in the canonical Wnt pathway. In Wnt-off state, β-
catenin in the cytoplasm is within a protein complex composed
of adenomatous polyposis coli (APC), Axin, glycogen synthase
kinase 3β (GSK3β), and casein kinase 1α (CK1α), and
phosphorylated by GSK3β and CK1α. Then, β-catenin is
ubiquitinated and targeted for destruction by the proteasome. As
a result, the amount of β-catenin is low. Conversely, in the Wnt-
on state, Wnt ligands bind to the receptor complex composed of
a Frizzled (Fz) receptor and low-density lipoprotein receptor-
related proteins (LRP5/6). This receptor recruits Disheveled
(Dvl) to the plasma membrane. Dvl forms a complex with Axin,
Fz, and LRP5/6 and acts as a direct competitive inhibitor of
GSK3β. Thus, β-catenin escapes phosphorylation and
accumulates in the cytoplasm. The stabilized β-catenin
translocates into the nucleus, where it serves as a transcriptional
co-activator and influences gene transcription. Thus, β-catenin
localization to the nucleus reflects Wnt activity (3-5).

The canonical Wnt/β-catenin signaling pathway plays an
important role in cell proliferation, growth, and differentiation
(6, 7). Mutations in Wnt signaling pathway components cause
many diseases, including cancer. Furthermore, dysregulation
of the Wnt signaling pathway is associated with the
expansion of stem cell and progenitor cell lineages and is also
highly associated with carcinogenesis (8-10). Most colorectal
cancer (CRC) cases are caused by mutations in Wnt signaling
pathway components (11-13). Originally, a mutation in the
APC gene was associated with familial adenomatous
polyposis (FAP). Approximately 1% of FAP cases progress to
CRC (14, 15). Furthermore, 85% of sporadic intestinal
neoplasia cases have mutations in APC, whereas activating
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mutations in β-catenin are found in approximately 50% of
CRC tumors without APC mutations (16, 17). The Wnt
signaling pathway is related to both carcinogenesis and
treatment resistance (18). Several reports have evaluated the
correlation between the Wnt signaling pathway and resistance
to chemotherapy (19, 20). Several attempts to discover new
drugs targeting the Wnt signaling pathway and to improve
chemo-resistance have been made (21-23). Although the
relationship between the Wnt signaling pathway and chemo-
resistance has been well studied, their relationship with
radioresistance remains unclear.

The Wnt signaling pathway is responsible for designating
cancer stem cells (CSCs) (24). The nuclear localization and
subsequent activation of T cell factor (TCF) transcription is
an important process in CSCs (25). CD44 is a multifunctional
cell surface adhesion protein that reacts with extracellular
matrix components. Increased CD44 expression leads to
enhanced CSC properties in colon cancer cells (26, 27). There
are also reports showing that the combination of CD44 and
CD133 is correlated with features of CSCs (28). CD44 helps
to facilitate cell-cell and cell-matrix interactions through its
affinity for hyaluronic acid; it is also involved in cell adhesion
and the assembly of growth factors on the cell surface (29).
Increased resistance to radiation therapy has been reported in
CD44high cells compared to CD44low cells (29-31). 

The aldehyde dehydrogenase (ALDH) family of enzymes
are cytosolic isoenzymes responsible for oxidizing
intracellular aldehydes and retinol to retinoic acid in early
stem cell differentiation (32). ALDH1 is expressed in various
normal stem and progenitor cells and contributes to cell
proliferation and differentiation (27, 33). Some reports have
shown that nuclear localization of ALDH1A1 is associated
with a dismal prognosis in clinical CRC cases (34, 35).
ALDH1 is also correlated with radioresistance (31, 36, 37). 

The epithelial cell adhesion molecule (EpCAM) is also
known as an epithelial-specific antigen. EpCAM was
initially discovered as a predominant antigen in human colon
carcinoma; it is a transmembrane glycoprotein that is highly
expressed in rapidly proliferating carcinomas (38). Recent
data have suggested a more multifaceted role of EpCAM in
not only cell-cell adhesion but also cell signaling, migration,
proliferation, and differentiation (39). EpCAM is also
reported to be a putative CSC marker (40). EpCAM
expression is also correlated with radioresistance (41).

This study focused on the localization of β-catenin and
analyzed its correlation with radioresistance and cancer stem-
like cells.

Materials and Methods

Cell culture. Two human CRC cell lines, HCT116 and SW480
(American Type Culture Collection, Manassas, VA, USA), were
maintained in culture using standard protocols. The HCT116 cell

line was cultured in McCoy’s 5A medium (American Type Culture
Collection, Manassas, VA, USA) supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin. The SW480 cell line
was cultured in Leibovitz’s L-15 medium (American Type Culture
Collection, Manassas, VA, USA) supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin. 

Irradiation. Photon irradiation was delivered by a Primus system
(Siemens Healthcare, Malvern, PA, USA). The photon energy was
4 MV and the dose rate was 250 monitor units per min. Cells were
plated into dishes at approximately 50% confluency. Twenty-four h
after plating, a 1-cm bolus was put on dishes and the cells in dishes
were irradiated. 

Clonogenic assay. Each cell line was irradiated in dishes with 0
(control), 2, 4, and 8 Gy, respectively. Subsequently, 100 and 1,000
cells were re-plated. After 14 days of cultivation, the cells were
rinsed with phosphate buffer saline. A 3-ml of 6.0% glutaraldehyde
and 0.5% crystal violet was then added and incubated for 30 min.
The glutaraldehyde crystal violet mixture was then rinsed with
water and the plate was allowed to dry in normal air at room
temperature. Finally, the colonies were counted.

Cell block. The cell samples were fixed for one h by mixing with
10% buffered formalin. After one h, the samples were centrifuged
at 1000 x g for 15 min. The supernatant was discarded and a further
fresh 100% and then 70% alcohol was added to the sediment and
incubated for one day. On the following day, the sediment
containing the cells was processed along with other routine
histopathological specimens.

IHC staining. A labeled streptavidin-biotin (LSAB) method was used
for immunohistochemical (IHC) staining of deparaffinized 3-μm-
thick sections. The sections were placed in citrate buffer (10 mmol-
1, pH 6.0) and then autoclaved at a chamber temperature of 121°C
for 1 min to retrieve the antigen. They were then rinsed and blocked
in 3% hydrogen peroxide. Non-specific binding sites were blocked
in 0.01 M phosphate-buffered saline (pH 7.4) containing 2% bovine
serum albumin (Wako Pure Chemical, Osaka, Japan) for 40 min. The
primary antibodies used were purified mouse anti-β-catenin [mouse
immunoglobulin (IgG), 1:100, BD bioscience, CA, USA], anti-
gamma H2A.X (phospho S139) antibody (rabbit IgG, 1:100, abcam,
CA, UK), anti-ALDH1A1 antibody (ab52492) (rabbit IgG, 1:500,
abcam, CA, UK), purified mouse anti-human CD44 (550392)
(mouse IgG, 1:25, BD Pharmingen, NJ, USA), and anti-EpCAM
antibody (ab71916) (rabbit IgG, 1:50, abcam, Cambridge, UK).

Results
Localization of β-catenin in colorectal cancer (CRC) cell
lines. To investigate the localization of β-catenin, the
hallmark of Wnt activation, in CRC cell lines, we performed
IHC with β-catenin antibody in SW480 and HCT116 CRC
cell lines, which have similar protein expression levels in
western blot analysis (42, 43). HCT116 cells express wild-
type APC and mutant β-catenin, while SW480 cells express
mutant APC. SW480 cells had one mutant allele with loss of
the other allele (44). β-catenin expression was localized in
the nucleus and cytoplasm of SW480 cells and in the
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membrane of HCT116 cells (Figure 1). The results indicated
that SW480 cells had a different Wnt/β-catenin signaling
pathway activation compared to HCT116 cells.

Comparison of DNA repair rates after irradiation. To assess
the level of DNA double-strand break (DSB) repair after
irradiation, expression of γH2AX, a surrogate marker of
DSBs, was evaluated in both SW480 and HCT116 cell lines
after 4 Gy irradiation. The number of foci was significantly
lower in SW480 cells than that in HCT116 cells at 24 h after
irradiation (Figure 2). These results suggested that nuclear
β-catenin, the hallmark of Wnt activation, is associated with
DSB repair at 24 h after irradiation. 

Sensitivity of CRC cells to X-rays assessed by clonogenic
assay. To measure the survival of both SW480 and HCT116
cells after irradiation, clonogenic assays were performed
following 0, 2, 4, and 8 Gy irradiation (Figure 3). Fourteen
days after irradiation, colonies on each dish were counted.
At each irradiation dose, the ratio of colony numbers to the
control group (0 Gy) was calculated and expressed
logarithmically. Figure 3 shows the results of clonogenic
assays starting from 1,000 cells. There were significantly
more colonies in SW480 cells than in HCT116 cells at 2, 4,
and 8 Gy (p=0.0316, <0.0001, and 0.0002, respectively).
Similarly, starting from 100 cells, the clonogenic assay
showed significantly higher numbers of colonies in SW480
cells than those in HCT116 cells at 2, 4, and 8 Gy (data not
shown). No colony formation was observed in the dishes

where 100 HCT116 cells plated after 8 Gy irradiation. These
results indicate that SW480 cells were more radioresistant
compared to HCT116 cells. Taken together, Wnt-activated
CRC cells may be radioresistant relatively to non-activated
CRC cells. 

Expression of CSC markers in Wnt-activated and non-
activated CRC cells. Next, to evaluate the correlation
between putative CSC markers and nuclear β-catenin, IHC
for ALDH1, CD44, and EpCAM was performed in each cell
line. SW480 cells, which have high β-catenin accumulation
in the nucleus, had a significantly higher proportion of
ALDH1-positive cells compared to HCT116 cells, which
showed almost exclusive membranous staining of β-catenin
(Figure 4). Similar to ALDH1 expression, the proportion of
CD44-positive SW480 cells was also significantly higher
than that in HCT116 cells (Figure 5). In contrast, the
proportion of EpCAM-positive SW480 cells was
significantly lower than that in HCT116 cells (Figure 6).
These results suggest that ALDH1 and CD44 expression may
be radioresistant markers as well as nuclear β-catenin
expression in CRC cells. 

Discussion

When the Wnt/β-catenin signaling pathway is active, β-catenin
is not degraded; it accumulates and translocates into the nucleus.
Thus, increased β-catenin levels in the nucleus indicate Wnt-
active status. In contrast, when Wnt is inactive, β-catenin is
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Figure 1. Expression of β-catenin in HCT116 and SW480 cells. In SW480 cells, β-catenin predominantly localized in the nucleus, whereas in HCT116
cells, it was primarily found in the plasma membrane. Arrow indicates cellular membrane. Arrowhead indicates nucleus. Scale bars: 50 μm. 



degraded by the proteasome and the levels of β-catenin in the
cytoplasm are decreased. Translocation into the nucleus does
not occur because the cytoplasmic β-catenin level is not high.
Therefore, higher β-catenin levels in the plasma membrane
rather than the nucleus indicates inactive Wnt. In SW480 cells,
β-catenin was predominantly observed in the nucleus, whereas
it was primarily observed in the plasma membrane in HCT116
cells. SW480 cells showed higher Wnt/β-catenin signaling
pathway activation compared to HCT116 cells.

Photon beams have an anti-tumor effect by damaging
tumor DNA. The DSB levels were assessed via γH2AX, a
surrogate marker of DSBs. At the early time point, there was
no difference in DNA damage foci formation between
HCT116 and SW480 cells. However, 24 h after irradiation,
most of the DSBs in SW480 cells were repaired, but
remained in HCT116 cells. The number of γH2AX foci in
SW480 cells was significantly lower than that in HCT116
cells at 24 h after irradiation. Wnt signaling is related to

DNA damage repair, suggesting increased repair with high
Wnt activity (45). This is considered to be one of the causes
of resistance to treatment. Moreover, the results of the
colony formation assay showed that SW480 cells, with
higher Wnt activity, formed higher number of colonies and
showed resistance to irradiation compared to HCT116 cells,
with lower Wnt activity. This result was similar regardless
of the irradiation dose and numbers of seeding cells.

Wnt signaling is also involved in CSC control (46-48).
CD44, CD133, ALDH1, Lgr5, EpCAM, etc. are putative
markers of CSC in colorectal cancer (26-28, 33, 35, 40, 49).
Among them, we evaluated CD44, ALDH1, and EpCAM by
IHC. Koh et al. have reported that activation of gastrin by β-
catenin is an early event of colon carcinogenesis that promotes
tumor development (50). Wnt signaling is enhanced by the
secretion of progastrin, a direct target of the oncogenic Tcf/β-
catenin pathway (51, 52). Jin et al. have reported an increased
proportion of CD44-positive cells following the addition of
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Figure 2. γH2AX expression after irradiation. (a) γH2AX foci after 4 Gy irradiation in HCT116 and SW480 cells. At 24 h after irradiation, most
of the double-strand breaks (DSBs) in the SW480 cells are repaired, whereas they remain in the HCT116 cells. (b) The number of γH2AX foci in
SW480 cells was significantly lower than that in HCT116 cells at 24 h after irradiation (Student’s t-test; N=10). Scale bars: 10 μm.
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Figure 4. ALDH1 expression in HTC116 and SW480 cells. (a) Expression of ALDH1 in HTC116 and SW480 cells. (b) SW480 cells had a significantly
higher proportion of ALDH1-positive cells compared to HCT116 cells (Student’s t-test; N=5). Error bars represent the standard deviation of the
mean value. Scale bars: 10 μm.

Figure 3. Colony formation after irradiation in SW480 and HCT116 cells. (a) Colony formation assay in HCT116 and SW480 cells. (b) Comparison
of radioresistance between SW480 and HCT116 cells (Student’s t-test; N=3). Scale bars: 10 μm.
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Figure 6. EpCAM expression in HCT116 and SW480 cells. Expression of EpCAM in HCT116 and SW480 cells. (b) HCT116 cells had a significantly
higher proportion of EpCAM-positive cells compared to SW480 cells (Student’s t-test; N=5). Error bars represent the standard deviation of the
mean value. Scale bars: 10 μm.

Figure 5. CD44 expression in HTC116 and SW480 cells. (a) Expression of CD44 in HTC116 and SW480 cells. (b) SW480 cells had a significantly
higher proportion of CD44-positive cells compared to HCT116 cells (Student’s t-test; N=5). Error bars represent the standard deviation of the mean
value. Scale bars: 10 μm. 



prosgastrin in a colon cancer cell line, indicating an increase
in putative CSC (53). In addition, Giraud et al. have reported
that decreased proportion of ALDHhigh cells by suppression of
progastrin resulted in decreased tumorigenesis and glycolytic
ability and restricted the self-renewal ability of CSC (54).
Thus, there may be a relationship between the Wnt signaling
and CSC. In this study, SW480 cells with high Wnt activity
had a significantly higher proportion of CD44-positive cells
than HCT116 cells. A similar result was observed for ALDH1.
SW480 cells with high Wnt activity had a significantly lower
proportion of EpCAM-positive cells than HCT116 cells.
While there are reports that EpCAM may be a marker of CSC,
this finding remains controversial. EpCAM expression has
been linked to poorer disease-free and overall survival in
breast cancer (55). Gosens et al. have observed strong
EpCAM staining in the tumor center and a progressive loss at
the tumor front associated with poor local and overall
recurrence-free survival in colorectal cancer (56). Lugli et al.
have reported a correlation between the loss of membranous
EpCAM and tumor invasiveness and progression (57).
EpCAM overexpression was related to lymph node
classification and tumor border configuration (pushing or
infiltration) but not to local recurrence. These results suggest
that the loss of EpCAM at the tumor border results in reduced
adhesion and induces the epithelial-mesenchymal transition,
resulting in lymph node and distant metastasis. Pastushenko
et al. have analyzed cells that did not express EpCAM and
isolated cell populations based on their expression of the
mesenchymal-cell receptor proteins CD51, CD61 and CD106.
The authors identified two cell populations that were the most
likely to metastasize; EpCAM(–), CD106(–), CD51(–),
CD61(–) and EpCAM(–), CD106(+), CD51(–), CD61(–) (58,
59).These findings suggest that EpCAM affects metastasis and
prognosis but has little direct effect on radiosensitivity.

In conclusion, nuclear accumulation of β-catenin is an
indicator of active Wnt signaling. Cell lines with higher nuclear
β-catenin accumulation showed resistance to radiation therapy
compared to cell lines with lower accumulation, as well as a
significantly higher positive proportion of putative CSC. These
findings suggest that the Wnt/β-catenin signaling pathway is
related to radioresistance and stemness of CSC.
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