
Abstract. Background/Aim: Studies of biological activity of 2-
styrylchromone derivatives focusing on antioxidant, anti-
inflammatory, antiviral and antitumor activity are limited. In this
study, eighteen synthetic 2-styrylchromone derivatives were
investigated for their cytotoxicity against human malignant and
non-malignant cells, and then subjected to quantitative
structure–activity relationship (QSAR) analysis. Materials and
Methods: Tumor-specificity was calculated by the ratio of mean
50% cytotoxic concentration (CC50) against four normal oral
cells to that against oral squamous cell carcinoma cell lines.
Induction of apoptosis and growth arrest were evaluated by cell-
cycle analysis. For QSAR analysis, 3,117 types of
physicochemical, structural, and quantum chemical features
were calculated from the most stabilized structure of 2-
styrylchromone derivatives. Results: Two 2-styrylchromone
derivatives in which a methoxy group was introduced at the 4-
position of the benzene ring showed tumor-specificity equivalent
to or higher than doxorubicin in TS value. These compounds
accumulated the subG1 and G2/M phase cells, suggesting the
induction of apoptosis. Their tumor-specificity can be explained
mainly by molecular shape and electronic state. Conclusion:
These findings suggest the applicability of 2-styrylchromone to
develop safe and effective anticancer agents as seed compounds.

Our group recently found that low-molecular weight natural
polyphenols, such as tannins and flavonoids showed very
low anticancer activity (evaluated by tumor-specificity with
human cultured malignant and none-malignant cells) (1). On
the other hand, chemical modification of chromone, two ring
back-bone structure present in flavonoids, yielded derivatives
with much higher tumor-specificity (2, 3). 

2-Styrylchromone is a derivative having a styryl group bonded
to the 2-position of the chromone skeleton. Synthetic 2-
styrylchromone derivatives have been reported to show radical
scavenging (4, 5), anti-inflammatory (6), hepatoprotective (7),
neuroprotective (8-10), anti-human immunodeficiency virus (11),
anti-norovirus (12), anti-rhinovirus (13, 14), antitumor (15-18),
and monoamine oxidase B inhibiting (19) activity. However, very
few studies tested their cytotoxicity against normal cells (16). 

In the present study, we investigated the cytotoxicity of
eighteen synthetic 2-styrylchromone derivatives (Figure 1)
against four human oral squamous cell carcinoma (OSCC)
cells lines (Ca9-22, HSC-2, HSC-3, HSC-4) and three human
normal oral mesenchymal cells [human gingival fibroblast
(HGF), human periodontal ligamental fibroblast (HPLF) and
human pulp cell (HPC)], and performed quantitative
structure–activity relationship (QSAR) analysis.

Materials and Methods

Materials. Dulbecco’s modified Eagle’s medium (DMEM) was
purchased from GIBCO BRL (Grand Island, NY, USA); fetal bovine
serum (FBS), doxorubicin, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), ribonuclease (RNase) A from
Sigma-Aldrich Inc. (St. Louis, MO, USA); dimethyl sulfoxide
(DMSO), actinomycin D (FUJIFILM Wako Chem., Osaka, Japan);
100 mm dishes from True Line (Nippon Genetics Co., Ltd., Tokyo,
Japan) and 96-well plates from TPP (Techno Plastic Products AG,
Trasadingen, Switzerland). 

6489

This article is freely accessible online.

Correspondence to: Yoshihiro Uesawa, Department of Medical
Molecular Informatics, Meiji Pharmaceutical University, 2-522-1
Noshio, Kiyose, Tokyo 204-858, Japan. Tel: +81 424958892,
e-mail: uesawa@my-pharm.ac.jp

Key Words: 2-Styrylchromones, cytotoxicity, tumor-specificity,
QSAR analysis, cell cycle analysis, molecular shape. 

ANTICANCER RESEARCH 39: 6489-6498 (2019)
doi:10.21873/anticanres.13863

Quantitative Structure–Cytotoxicity 
Relationship of 2-Styrylchromones

YOSHIHIRO UESAWA1, JUNKO NAGAI1, HAIXIA SHI2,3, HIROSHI SAKAGAMI3, KENJIRO BANDOW4, 
AKITO TOMOMURA4, MINEKO TOMOMURA5, SAKI ENDO6, KOICHI TAKAO6 and YOSHIAKI SUGITA6

1Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan;
2Shanghai Ninth People’s Hospital, Shanghai Jiatong University School of Medicine, Shanghai, P.R. China;

3Meikai University Research Institute of Odontology, Saitama, Japan;
4Division of Biochemistry, Meikai University School of Dentistry, Saitama, Japan;

5Department of Oral Health Sciences, Meikai University, Chiba, Japan;
6Department of Pharmaceutical Sciences, Faculty of Pharmacy and 

Pharmaceutical Sciences, Josai University, Saitama, Japan 



Synthesis of test compounds. 2-[(1E)-2-Phenylethenyl]-4H-1-
benzopyran-4-one [1], 2-[(1E)-2-(4-fluorophenyl)ethenyl]-4H-1-
benzopyran-4-one [2], 2-[(1E)-2-(4-chlorophenyl)ethenyl]-4H-1-
benzopyran-4-one [3], 2-[(1E)-2-(4-bromophenyl)ethenyl]-4H-1-
benzopyran-4-one [4], 2-[(1E)-2-(4-methoxyphenyl)ethenyl]-4H-1-
benzopyran-4-one [5], 2-[(1E)-2-(3,4-dimethoxy)ethenyl]-4H-1-
benzopyran-4-one [6], 6-methoxy-2-[(1E)-2-phenylethenyl]-4H-1-
benzopyran-4-one [7], 2-[(1E)-2-(4-fluorophenyl)ethenyl]-6-methoxy-
4H-1-benzopyran-4-one [8], 2-[(1E)-2-(4-chlorophenyl)ethenyl]-6-
methoxy-4H-1-benzopyran-4-one [9], 2-[(1E)-2-(4-bromophenyl)
ethenyl]-6-methoxy-4H-1-benzopyran-4-one [10], 6-methoxy-2-[(1E)-
2-(4-methoxyphenyl)ethenyl]-4H-1-benzopyran-4-one [11], 2-[(1E)-2-
(3,4-dimethoxy)ethenyl]-6-methoxy-4H-1-benzopyran-4-one [12], 7-
methoxy-2-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one [13], 2-
[(1E)-2-(4-fluorophenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one
[14], 2-[(1E)-2-(4-chlorophenyl)ethenyl]-7-methoxy-4H-1-benzo-
pyran-4-one [15], 2-[(1E)-2-(4-bromophenyl)ethenyl]-7-methoxy-4H-
1-benzopyran-4-one [16], 7-methoxy-2-[(1E)-2-(4-methoxyphenyl)
ethenyl]-4H-1-benzopyran-4-one [17], and 2-[(1E)-2-(3,4-dimethoxy)
ethenyl]-7-methoxy-4H-1-benzopyran-4-one [18] were synthesized by
the condensation of the corresponding 2-methylchromones with
selected benzaldehyde derivatives, according to previous methods
(19). All compounds were dissolved in DMSO at 40 mM and stored
at –20˚C before use.

Cell culture. Human OSCC cell lines (Ca9-22, derived from
gingival tissue; HSC-2, HSC-3. HSC-4, derived from tongue) and
human normal oral mesenchymal cells (HGF, HPLF, HPC) at 10-18
population doubling levels were cultured at 37˚C in DMEM
supplemented with 10% heat-inactivated FBS, 100 units/ml,
penicillin G and 100 μg/ml streptomycin sulfate under a humidified
5% CO2 atmosphere, as described previously (20, 21). 

Assay for cytotoxic activity. Cells were inoculated at 6×103 cells/cm2
in a 96-microwell plate. After 48 h, the medium was replaced with
fresh medium containing (1/2)2 serially diluted test compounds. Cells
were incubated for 48 h and the relative viable cell number was then
determined in triplicate by MTT method, as described previously (20,
21). Control cells were treated with the same amounts of DMSO and
the cell damage induced by DMSO was subtracted. The concentration
of compound that reduced the viable cell number by 50% (CC50) was
determined from the dose–response curve.

Calculation of tumor-specificity index (TS). TS was calculated by
the following equation: TS=Mean CC50 (HGF + HPLF + HPC)/
meanCC50 (Ca9-22 + HSC-2 + HSC-3 + HSC-4) (D/B) or CC50
(HGF)/C50 (Ca9-22) [both derived from gingival tissue (22)] (C/A
in Table I), as described previously (20, 21). 

Calculation of potency-selectivity expression (PSE). PSE, that is the
product of tumor-specificity and cytotoxicity against tumor cells,
was calculated by the following equation: PSE={Mean CC50
(normal cells)/[mean CC50 (OSCC cell lines)]2}×100 [as shown in
(D/B2) ×100 or (C/A2) ×100] (Table I) (20, 21).

Cell-cycle analysis. Treated and untreated cells (approximately 106
cells) were harvested from 100 mm dish, fixed with
paraformaldehyde and then treated with ribonuclease A. After
staining with propidium iodide in the presence of 0.01% Nonidet-
40, filtering through cell strainers and the stained cells were

subjected to cell sorting (SH800 Series; SONY Imaging Products
and Solutions Inc., Kanagawa, Japan) and cell-cycle analysis with
Cell Sorter Software version 2.1.2. (SONY Imaging Products and
Solution Inc.), as described previously (21).

Estimation of CC50 values for computational analysis. The negative
log CC50 (pCC50) values were used for the comparison of
cytotoxicity between compounds, as described previously (21). The
mean pCC50 values for normal cells and tumor cell lines were
defined as N and T, respectively. The difference (T–N) was used as
a tumor-specificity index in the following analyses (21).

Calculation of chemical descriptors. The 3D structure of each
chemical structure (MarvinSketch 18.10.0, ChemAxon, Budapest,
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Figure 1. Structure of eighteen 2-styrylchromone derivatives [1-18]
investigated in this study. 



Hungary) (23), was optimized by CORINA Classic (Molecular
Networks GmbH, Germany) with forcefield calculations (amber-10:
EHT) in Molecular Operating Environment (MOE) version
2018.0101 (Chemical Computing Group Inc., Quebec, Canada) (24).
The number of structural descriptors calculated from MOE and
Dragon (Dragon 7 version 7.0.2 (Kode srl., Pisa, Italy) (25) was 354
and 5,255, respectively. Among them, the number of descriptors
used for analysis was 287 and 2,830 (total 3,117), respectively. 

Statistical analysis. The CC50 values were expressed as mean±S.D.
of triplicate assays. The relation among cytotoxicity, tumor-
specificity index and chemical descriptors was investigated using
simple regression analyses by JMP Pro version 14.1.0 (SAS Institute
Inc., Cary, NC, USA). The significance level was set at p<0.05. 

Results
Cytotoxicity and tumor-specificity. Among eighteen
synthetic 2-styrylchromones, [5] showed the highest
cytotoxicity against four OSCC cell lines (mean CC50=1.9
μM) (B in Table I), followed by [11] (3.8) > [3] (10.6) >
[14] (12.7) > [9] (14.8) > [10] (15.6) > [2] (19.8) > [4]
(24.5) > [7] (37.6) > [1] (37.7) > [6] (45.4) > [17] (49.5) >

[18] (56.6) > [16] (65.8) > [8] (67.5) > [15] (68.0) > [13]
(115.5) > [12] (256.7 μM). On the other hand, [16] showed
the highest cytotoxicity against three normal oral
mesenchymal cells (mean CC50=27.3 μM) (D in Table I),
followed by [15] (44.8) > [4] (69.5) > [1] (79.2) > [10]
(87.0) > [6] (99.8) > [5] (159.1) > [2] (175.6) > [17] (199.3)
> [8] (208.6) > [7] (214.2) > [3] (218.1) > [14] (221.0) >
[13] (230.9) > [18] (272.2) > [9] (314.9) > [12] (315.9) >
[11] (335.7 μM) (Table I). When tumor-specificity (TS) was
calculated by the ratio of mean CC50 for non-malignant
(normal oral cells) to that of malignant (OSCC cells) (D/B
in Table I), [11] showed the highest TS value (89.1),
followed by [5] (84.1) > [9] (21.2) > [3] (20.6) > [14] (17.4)
> [2] (8.9) > [7] (5.7) > [10] (5.6) > [18] (4.8) > [17] (4.0)
> [8] (3.1) > [4] (2.8) > [6] (2.2) > [1] (2.1) > [13] (2.0) >
[12] (1.2) > [15] (0.7) > [16] (0.4).  [5] also showed the
highest PSE value [(D/B2) ×100 in Table I] (4443.4),
followed by [11] (2364.8) > [3] (195.3) > [9] (142.8) > [14]
(136.3) > [2] (44.9) > [10] (35.7) > [7] (15.2) > [4] (11.6)
> [18] (8.5) > [17] (8.1) > [1] (5.6) > [6] (4.8) > [8] (4.6) >
[13] (1.7) > [15] (1.0) > [16] (0.6) > [12] (0.5).  
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Table I. Cytotoxic activity of eighteen 2-styrylchromone derivatives [1-18] against oral malignant and non-malignant cells. Each value represents
the mean of triplicate determinations. Two sets of tumor-specificity index (TS) and potency-selectivity expression (PSE) values were determined
using human oral squamous cell carcinoma (OSCC) cell lines compared to human normal oral mesenchymal cells, and paired cells derived from
the same (gingival) tissue.

                                                                                                   CC50 (μM)

                Human oral squamous cell carcinoma cell lines                            Human normal oral cells

             Ca9-22    HSC-2     HSC-3    HSC-4     Mean      SD        HGF       HPLF       HPC       Mean         SD                 TS                          PSE
                  A                                                           B                         C                                              D                          D/B       C/A        (D/B2)     (C/A2)
                                                                                                                                                                                                                      ×100        ×100

1             23.3        57.0         46.0        24.3      37.7     16.6        79.7       109.3       48.7        79.2          30.3       2.1        3.4          5.6        14.7 
2             28.5        13.0         33.7          3.9      19.8     13.8      264.0       248.7       14.0      175.6        140.1       8.9        9.3        44.9        32.4 
3               8.6          6.3         11.4        16.0      10.6       4.2      281.0       333.0       40.3      218.1        156.1     20.6      32.7      195.3      379.9 
4             32.3        20.7         21.5        23.4      24.5       5.4      154.7         39.3       14.5        69.5          74.8       2.8        4.8         11.6        14.8 
5               2.0          1.9           1.2          2.6        1.9       0.6      290.7       142.0       44.8      159.1        123.8     84.1    148.6    4443.4    7592.1 
6             32.7        65.0         39.7        44.3      45.4     13.9        80.7       207.7       11.0        99.8          99.7       2.2        2.5          4.8          7.6 
7             28.3        51.7         36.7        33.7      37.6     10.0      250.3       209.3     183.0      214.2          33.9       5.7        8.8        15.2        31.2 
8             23.6      200.3         30.7        15.4      67.5     88.8      269.0       343.0       13.7      208.6        172.8       3.1       11.4          4.6        48.2 
9               3.1        32.7         14.0          9.6      14.8     12.7      400.0       400.0     144.7      314.9        147.4     21.2    128.0      142.8    4096.0 
10             5.1        24.7         10.5        22.2      15.6       9.4        93.3       158.0         9.6        87.0          74.4       5.6      18.4        35.7      363.6 
11             2.9          4.5           2.8          4.9        3.8       1.1      297.0       400.0     310.0      335.7          56.1     89.1    102.4    2364.8    3531.5 
12         283.0      400.0       173.0      170.7    256.7   109.0      363.7       315.7     268.3      315.9          47.7       1.2        1.3          0.5          0.5 
13           75.7      128.7         87.0      170.7    115.5     43.3      218.3       346.7     127.7      230.9        110.0       2.0        2.9          1.7          3.8 
14             9.8        16.1         12.1        13.0      12.7       2.6      310.3       344.3         8.2      221.0        185.0     17.4      31.7      136.3      323.1 
15           22.7        84.3       135.3        29.7      68.0     52.7        23.7       105.3         5.3        44.8          53.3       0.7        1.0          1.0          4.6 
16           69.0        88.7         77.3        28.0      65.8     26.4        33.7         40.0         8.2        27.3          16.8       0.4        0.5          0.6          0.7 
17           31.3        82.3         39.0        45.3      49.5     22.6      191.7       200.0     206.3      199.3            7.4       4.0        6.1          8.1        19.5 
18           18.9        65.3         82.3        60.0      56.6     26.9      334.3       400.0       82.3      272.2        167.7       4.8      17.7          8.5        93.6 
DXR    0.170      0.078       0.078      0.078    0.101   0.046        10.0         10.0         0.4          6.8            5.5     67.4      58.8  66736.4  34602.1 

DXR: Doxorubicin; Ca9-22, derived from gingival tissue; HSC-2, HSC-3 and HSC-4, derived from tongue. Compounds 1-18 are shown in bold.



The prominent TS and PSE values of [5, 11] were not
changed when Ca9-22 and HGF, both derived from gingival
tissues, were used as target cell: TS=148.6, 102.4 (C/A) and
PSE=7592.1, 3531.5 [(C/A2) ×100 in Table I], respectively.
Dose-response curves (Figure 2A and 2B) showed clearly
that all OSCC cells (Ca9-22, HSC-2, HSC-3, HSC-4) were
more sensitive to [5, 11] than normal oral cells (HGF, HPLF,
HPC). Cell-cycle analysis demonstrated that both [5, 11]
accumulated the subG1 and G2/M phase cells, suggesting the
induction of apoptosis (Figure 3).

Computational analysis. QSAR analysis of cytotoxicity and
tumor-specificity of eighteen 2-styrylchromone derivatives [1-
18] were next performed. Since significant correlation (p<0.05)
was found between cytotoxicity against tumor and normal
cells, and TS with 139, 472 and 67 chemical descriptors (data
not shown), top six chemical descriptors were chosen for
QSAR analysis (Figures 4, 5 and 6; Table II).

Cytotoxicity of eighteen 2-styrylchromones against human
OSCC cell lines was negatively correlated with J_D
(topological shape) (r2=0.555, p=0.0004), balabanJ (topological
shape) (r2=0.533, p=0.0006), CATS2D_09_AL (hydrogen-
bond acceptor and lipophilicity) (r2=0.486, p=0.0013),
RDF085p (3D shape and polarizability) (r2=0.471, p=0.0017),
L2s (3D shape, size and electric state) (r2=0.468, p=0.0017)
and H2u (3D shape) (r2=0.452, p=0.0022) (Figure 4). 

Cytotoxicity of eighteen 2-styrylchromones against normal
oral cells was positively correlated with descriptors H2v (3D

shape and size) (r2=0.537, p=0.0005), H2p (3D shape and
polarizability) (r2=0.502, p=0.0010), TDB09r (3D shape and
size) (r2=0.492, p=0.0012), TDB07m (3D shape and size)(
r2=0.484, p=0.0013) and Mor08m (3D shape and size)
(r2=0.478, p=0.0015), but negatively correlated with Mor11e
(3D shape and electric state) (r2=0.470, p=0.0017) (Figure 5). 

TS of eighteen 2-styrylchromones was positively
correlated with H8i (3D shape and ionization potential)
(r2=0.516, p=0.0008), HATS5e (3D shape, size and electric
state) (r2=0.462, p=0.0019) and Ks (3D shape, size and
electric state) (r2=0.455, p=0.0021), but negatively correlated
with J_Dz(m) (topological shape and size) (r2=0.504,
p=0.0010), P2s (3D shape, size and electric state) (r2=0.457,
p=0.0021) and balabanJ (topological shape) (r2=0.431,
p=0.0031) (Figure 6).

Discussion
The present study demonstrated that two compounds: 2-
[(1E)-2-(4-methoxyphenyl)ethenyl]-4H-1-benzopyran-4-one
[5] and 6-methoxy-2-[(1E)-2-(4-methoxyphenyl)ethenyl]-
4H-1-benzopyran-4-one [11], showed comparable tumor-
specificity with doxorubicin, an anthracycline anticancer
drug (26, 27) (TS=84.1, 89.1 vs. 67.4 in D/B; 148.6, 102.4
vs. 58.8 in C/A, Table I). However, [5, 11] showed much
lower PSE values compared to doxorubicin, possibly due to
much lower cytotoxicity against OSCC cell lines (Table I).
Structure–activity relationship suggests the importance of
having OCH3 group in R4 position in [5], and two OCH3
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Figure 2. Cytotoxicity of compounds [5, 11] against four human OSCC cell lines, Ca9-22 (●), HSC-2 (■), HSC-3 (▲) and HSC-4) (◆), and three
human normal mesenchymal oral cells, HGF (●), HPLF (■) and HPC (▲). Cells were incubated for 48 h without (control) or with the indicated
concentrations of [5] (A) or [11] (B), and cell viability was determined by the MTT method, and expressed as a percentage to that of control. Each
value represents the mean±S.D. of triplicate assays. 



groups in R1 and R4 positions in [11]. However, [12] having
three OCH3 groups in R1, R3 and R4 positions, showed
significantly reduced tumor-specificity (Figure 1, Table I).
This may be explained by the dependence of tumor-
specificity on molecular shape, since the cytotoxicity of
eighteen 2-styrylchromones against tumor cell lines was
significantly (p<0.002) correlated with topological and 3D
shape, size, hydrogen-bond acceptor, lipophilicity,
polarizability and electric state (Figure 4), and tumor-
specificity was also significantly (p<0.004) correlated with

topological and 3D shape, size, ionization potential and
electric state (Figure 6). 

The present study also demonstrated that both [5, 11]
produced subG1 cell population (a marker of apoptosis) and
induced mitotic arrest (Figure 3). This is consistent with a
previous report that 4’-methoxy-2-styrylchromone
stabilized microtubules in a manner similar to paclitaxel,
inducing abnormal mitotic spindles characterized by the
formation of a monopolar structure, leading to mitotic
arrest in human breast adenocarcinoma MCF-7 and lung
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Figure 3. Effect of [5, 11] on cell-cycle distribution in HSC-2 cells. HSC-2 cells were incubated for 24 h with the indicated concentrations of [5],
[11] or 1 μM actinomycin D (Act D) as a positive control and then assessed for cell-cycle distribution by a cell sorter. 



adenocarcinoma NCI-H460 cell lines (16). It should be
noted that both [5, 11] induced apoptosis (subG1
population) of HSC-2 cells more potently than actinomycin
D, positive control of apoptosis (28). Induction of both

apoptosis and G2+M arrest may further potentiate the
antitumor potential.  

We previously reported that [5] (identical with the compound
3 in (18)) induced internucleosomal DNA fragmentation and
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Figure 4. Top six chemical descriptors that showed higher correlation with cytotoxicity of eighteen 2-styrylchromone derivatives [1-18] against
OSCC cells. The mean negative log CC50 values (T) against tumor cells were plotted. CC50: concentration of compound that reduced the viable
cell number by 50%. Top six chemical descriptors were: J_D (topological shape), balabanJ (topological shape), CATS2D_09_AL (hydrogen-bond
acceptor and lipophilicity), RDF085p (3D shape and polarizability), L2s (3D shape,size and electric state) andH2u (3D shape).



activation of caspase-3, 8 and 9 in human promyelocytic
leukemia HL-60 cells, but produced large DNA fragment
(assessed on agarose gel electrophoresis) in HSC-2 cells (18).
Lipophilic property of [5] (logP=2.6) (18) may facilitate its

intracellular entry. As far as we know, there are only two papers
about the antitumor potential of 4’-methoxy-2-styrylchromone
including ours (16, 18). Compound [5, 11] can, thus, be a lead
compound for designing a new type of anticancer drug. 
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Figure 5. Top six chemical descriptors that showed higher correlation with cytotoxicity of eighteen 2-styrylchromone derivatives [1-18] against
normal oral cells. The mean negative log CC50 values (N) against normal cells were plotted. Top six chemical descriptors were: H2v (3D shape
and size), H2p (3D shape and polarizability), TDB09r (3D shape and size), TDB07m (3D shape and size), Mor08m (3D shape and size) and Mor11e
(3D shape and electric state).



We recently found that the tumor-specificity of 3-(N-
cyclicamino)chromone derivatives (29), 2-(N-cyclicamino)
chromone (21), pyrano[4,3-b]chromones (30) and furo[2,3-
b]chromones (31) was also well correlated with descriptors

that reflect the molecular shape. The next step of our
research is to estimate the structure that should show higher
tumor-specificity based on the accumulated QSAR data
base, and then synthesize such compound for the
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Figure 6. Top six chemical descriptors that showed higher correlation with tumor-specificity of eighteen 2-styrylchromone derivatives [1-18]. The
mean negative logTS values (T-N) were plotted. Top six chemical descriptors were: H8i (3D shape and ionization potential), J_Dz(m) (topological
shape and size), HATS5e (3D shape, size and electric state), P2s (3D shape, size and electric state), Ks (3D shape, size and electric state) and
balabanJ (topological shape).



confirmation of tumor-specificity. Repeating this process
may make it possible to manufacture clinically applicable
compounds. The other direction of approach is to
synthesize the 13C-labeled compound to monitor its
intracellular distribution for the identification of target
molecule.
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