
Abstract. Background/Aim: Gefitinib is used to treat
patients with lung cancer, but in some patients, the disease
becomes gefitinib-resistant. Benzyl isothiocyanate (BITC),
found in cruciferous vegetables, has shown anticancer
activity in many human cancer cell lines. However, the
effects of BITC on gefitinib-resistant NCI-H460 lung cancer
cells in vitro have not been investigated. Materials and
Methods: The effects of BITC on gefitinib-resistant NCI-
H460 lung cancer cells were investigated in vitro. Flow
cytometric assay was used for determining the total viable
cell number, apoptotic cell death, the production of reactive
oxygen species (ROS) and Ca2+, mitochondriaI membrane
potential (Ψm) and caspase-3, -8 and -9 activities.
Furthermore, 4’, 6-diamidino-2-phenylindole staining was
used to examine chromatin condensation in NCI-H460 and
NCI-H460/G cells. Results: BITC reduced total viable cell
number via the induction of apoptotic cell death, that was
also confirmed by annexin V/propidium iodide double
staining assay. BITC increased ROS and Ca2+ production,

reduced Ψm and increased caspase-3, -8 and -9 activities in
both NCI-H460 and NCI-H460/G cells. Western blotting
assay also showed that BITC increased expression of cleaved
caspase-3 and -9, cytochrome c, BCL2-associated X protein,
endonuclease G, poly (ADP-ribose) polymerase, growth
arrest and DNA-damage protein 153, caspase-7 and
activating transcription factor 6 alpha, but reduced
apoptosis-inducing factor and caspase-9, BH3-interacting
domain death agonist, calpain 1, glucose-regulated protein
78 and inositol requiring enzyme 1 alpha in NCI-H460/G
cells. Conclusion: BITC-induced apoptotic cell death
appears to occur via caspase- and mitochondria-dependent
pathways in both cell lines. 

Worldwide, it has been recognized that lung cancer remains
the leading cause of cancer-related deaths, and the most
common form (>80%) of lung cancer is non-small cell lung
cancer (NSCLC) (1). Chemotherapy for patients with cancer
can lead to tumor remission, but may also result in the
development of drug resistance and the mechanism of such
resistance has been studied (2). Gefitinib (IRESSA®,
AstraZeneca), an inhibitor of the epidermal growth factor
receptor (EGFR) (3, 4), was demonstrated to have significant
antitumor activity in patients with advanced NSCLC with
EGFR mutations (5, 6). After treatment with this drug, some
patients develop resistance (7). Currently, some agents are
used that simultaneously block mesenchymal transition and
smoothened and can overcome gefitinib-resistance in human
NSCLC (8).

Benzyl isothiocyanate (BITC), a compound found in
cruciferous vegetables, was found to induce cytotoxic effects
via the induction of cancer cell apoptosis in many human
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cancer cell lines (9-13). Our previous studies also showed
that BITC alters the expression of genes associated with cell-
cycle regulation and apoptotic cell death in GBM 8401
human brain glioblastoma cells in vitro (14). It was also
shown that BITC suppressed the metastatic potential of
highly metastatic lung cancer cells through the induction of
apoptosis and cell-cycle arrest, via targeting the mitogen-
activated protein kinase/activation protein transcription
factor 1 (MAPK/AP1) pathway (15). Oral BITC treatment
induced a significant reduction in the growth of solid breast
tumors and reduced the numbers of pulmonary tumor
nodules and total pulmonary metastatic volume in BALB/c
mice (16). Recently, it was reported that BITC inhibited the
growth of gefitinib-resistant human lung adenocarcinoma
cells (PC9/AB2 and PC9/BB4 cells) by inducing apoptosis
in a dose-dependent manner, and activating caspase-3 and
protein kinase B (AKT)/MAPK pathways with generation of
reactive oxygen species (17). 

Although numerous studies have shown that BITC induced
apoptosis of human cancer cells, including lung cancer cells
and gefitinib-resistant human lung cancer cells, however, to
our knowledge, there is no report on NCI-H460 gefitinib-
resistant cell lines in vitro. Therefore, we investigated the
effects of BITC on gefitinib-resistant human lung cancer cells. 

Materials and Methods

Test compound and reagents. BITC, propidium iodide (PI), Tris-HCl,
trypsin, trypan blue, dimethyl sulfoxide (DMSO) and 4’,6-diamidino-
2-phenylindole (DAPI) were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). BITC was dissolved in DMSO as a stock for
further experiments. All control cultures were added carrier solvent
(0.5% DMSO). Cell culture medium (RPMI-1640), fetal bovine
serum (FBS), penicillin-streptomycin, 2’,7’-dichlorofluorescein
diacetate (DCFH-DA), fluo-3-acetometho-xyester (Fluo-3/AM) and
3,3’-dihexyloxacarbo-cyanine iodide (DiOC6) were purchased from
Invitrogen (Carlsbad, CA, USA). PhiPhiLux-G1D2, CaspaLux8-L1D2
and CaspaLux 9-M1D2 were purchased from OncoImmunin
(Gaithersburg, MD, USA). The following primary antibodies were
used: apoptosis-inducing factor (AIF), cytochrome c, calpain 1,
inositol-requiring enzyme 1 alpha (IRE1α), activating transcription
factor 6 alpha (ATF6α), glucose-regulated protein 78 (GRP78) (from
Santa-Cruz Biotechnology, Inc., Dallas, TX, USA); cleaved caspase-
3, cleaved caspase-9, B-cell lymphoma 2 (BCL2), X-linked inhibitor
of apoptosis (XIAP), BH3 interacting domain death agonist (BID),
BCL2-associated X protein (BAX), caspase-7 (all from Cell
Signaling, St Louis, MO, USA); growth arrest and DNA-damage
protein 153 (GADD153), β-actin (from Sigma Chemical Co., St.
Louis, Missouri, USA); and endonuclease G (ENDO G) (Millipore,
Temecula, CA, USA), and poly (ADP-ribose) polymerase (PARP)
(Abcam, Cambridge, MA, USA).

Cell culture. The NCI-H460 human lung cancer cell line was
obtained from the Food Industry Research and Development
Institute (Hsinchu, Taiwan, ROC) and was maintained in RPMI-
1640 medium supplemented with 10% FBS, 0.1 mg/ml

streptomycin, and 100 units/ml penicillin. Cells were cultured at
37˚C in an atmosphere of 5% CO2 (18).

Establishment of gefitinib-resistant NCI-H460 human lung cancer
cells. Gefitinib-resistant NCI-H460 human lung cancer cells were
obtained via their exposure to increasing concentrations of gefitinib.
Briefly, NCI-H460 cells were initially cultured in RPMI-1640
medium containing gefitinib at half the concentration causing 50%
growth inhibition (IC50) (19). Cells were sub-cultured in RPMI-1640
medium with the concentration of gefitinib increased by 25% every
2 weeks for 2-3 months. The resultant cells that grew exponentially
under a high concentration of gefitinib were recognized to be
getifinib-resistant NCI-H460 human lung cancer cells (designated
NCI-H460/G). The sensitive parental cells were used to compare the
surviving daughter cells using combination cell viability assay by
flow cytometry. The cell lines were exposed to a range of drug
concentrations and total cell viability was measured (20, 21).

Cell morphological changes and viability assay. NCI-H460 cells
(1×105 cells/well) were incubated with BITC (0, 5, 10, 15, 20, 25
and 30 μM) or gefitinib (40 μM) for 48 h. NCI-H460/G cells (1×105
cells/well) were incubated with BITC (0, 15, 20, 25 and 30 μM) for
48 h. After incubation, cells were examined and photographed under
phase-contrast microscopy and were then collected and stained with
PI (5 μg/ml) for total viable cell number by flow cytometry (Becton-
Dickinson, San Jose, CA, USA) as previously described (18).

Apoptotic cell death assay. NCI-H460 and NCI-H460/G cells
(1×105 cells/well) were incubated without agent or with 40 μM of
gefitinib for 48 h or with BITC (25 μM) for 6, 12, 24 and 48 h.
Cells were collected and were double-stained with annexin V/PI for
analysis of total apoptotic cell death by flow cytometry as
previously described (18).

DAPI assay. NCI-H460 and NCI-H460/G cells (1×105 cells/well) were
incubated with or without 40 μM of gefitinib for 48 h or with BITC
(25 μM) for 6, 12, 24 and 48 h. Cells were collected and fixed in 3%
paraformaldehyde in PBS for 20 min at room temperature. Cells were
then stained with DAPI solution (2 μg/ml) in order to examine DNA
condensation, and were photographed using a fluorescence microscope
as previously described (22).

Measurement of reactive oxygen species (ROS), intracellular Ca2+
and mitochondrial membrane potential (Ψm). NCI-H460 and NCI-
H460/G cells (1×105 cells/well) were incubated with gefitinib 
(40 μM) or BITC (25 μM) for 6, 12, 24 and 48 h. After incubation,
cells were harvested and were re-suspended in 500 μl of DCFH-DA 
(10 μM), 500 μl of Fluo-3/AM (2.5 μg/ml), and 500 μl of DiOC6
(4 μmol/l) for 30 min to measure the changes of ROS (H2O2),
intracellular Ca2+, and ΔΨm, respectively. All samples were
analyzed by flow cytometry as previously described (23, 24). All
samples were assayed in triplicate.

Measurement of caspase-3, -8 and -9 activities. NCI-H460 and NCI-
H460/G cells (1×105 cells/well) were incubated with gefitinib (40 μM)
or BITC (25 μM) for 6, 12, 24 and 48 h. Cells were collected and were
re-suspended in 25 μl of 20 μM substrate solutions (CaspaLux8-L1D2,
CaspaLux-9-M1D2 and PhiPhiLux-G1D2) for caspase-8, -9 and -3,
respectively. The activity of the individual caspase was measured by
using flow cytometry as previously described (12, 18).

ANTICANCER RESEARCH 38: 5165-5176 (2018)

5166



Protein extraction and western blotting analysis. NCI-H460 and
NCI-H460/G cells (1×106 cells/dish) were incubated with gefitinib
(40 μM) or BITC (25 μM) for 6, 12, 24 and 48 h. Cells were
collected and gently re-suspended in lysis buffer for sonication and
centrifuged as previously described (25, 26) The total protein was
determined by Bio-Rad protein assay kit (Bio-Rad, Hercules, CA,
USA) from the cell supernatant and with bovine serum albumin
(BSA) as the standard. Each sample (protein) was electrophoresed
on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
then electrotransferred onto polyvinylidene fluoride membrane
(Millipore, Bedford, MA, USA), washed and incubated with
primary antibodies AIF, BCL2, XIAP, BID, BAX, ENDO G, PARP,
GADD153, GRP78, IRE1α, ATF6α, and β-actin. The membranes
were washed and incubated with horseradish peroxidase-conjugated
secondary antibodies (1:10,000). Immunoreactivity of protein was
visualized and detected by Immobilon™ Western Chemiluminescent
HRP Substrate (Millipore) (25, 26).

Statistical analysis. Three separate experiments were performed and
all data were expressed as mean±SD. Differences between groups
were analyzed by one-way analysis of variance and Dunnett test for
multiple comparisons (SigmaPlot for Windows version 12.0; Systat
Software, Inc., San Jose, CA, USA). Differences with a p-value of less
than 0.05 were considered an indications of statistical significance.

Results
BITC induced cell morphological changes and reduced
viability of NCI-H460 and NCI-H460/G cells. Gefitinib at
40 μM reduced viable NCI-H460 cells by more than 50%
(Figure 1A). When NCI-H460 and NCI-H460/G cells were
treated with different concentrations of BITC for 48 h,
BITC significantly induced cell morphological changes
(Figure 1A) and reduced the total viable number of NCI-
H460 and NCI-H460/G cells in a dose-dependent manner
(Figure 1B). 

BITC induced apoptotic cell death in NCI-H460 and NCI-
H460/G cells. NCI-H460 and NCI-H460/G cells were treated
with gefitinib (40 μM) or BITC (25 μM) for different time
periods and apoptotic cell death was determined. The results
presented in Figure 2A indicate that BITC induced apoptotic
cell death in both NCI-H460 and NCI-H460/G cells in a
time-dependent manner. However, BITC induced a higher
percentage of apoptotic death in NCI-H460/G cells than in
NCI-H460 cells (Figure 2B). 
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Figure 1. Gefitinib and benzyl isothiocyanate (BITC) induced cell morphological changes (A) and reduced the cell viability (B) of NCI-H460 and
NCI-H460/G cells. Cells (1×105 cells/well) were treated with gefitinib (G; 40 μM) and different concentrations of BITC for 48 h. Cells were then
examined and photographed for morphological changes and were harvested for total viable cell viability as described in the Materials and Methods
section. Significantly different from the control (C) at **p<0.01 and ***p<0.001 as analyzed by the Dunnett’s test.



BITC induced chromatin condensation in NCI-H460 and
NCI-H460/G cells. After NCI-H460 and NCI-H460/G cells
were exposed to gefitinib (40 μM) or BITC (25 μM) for 6,
12, 24 and 48 h, cells were stained with DAPI and
photographed under fluorescence microscopy. The brighter
fluorescence in NCI-H460 cells than that of NCI-H460/G
cells after 48 h treatment with BITC (25 μM) was obvious
(Figure 3). The bright fluorescence reflects the presence of
nicked DNA and chromatin condensation. 

BITC induced intracellular Ca2+ production, and reduced
ROS production and Ψm in NCI-H460 and NCI-H460/G
cells. Cells were treated with gefitinib (40 μM) or BITC 
(25 μM) for 6, 12, 24 and 48 h, and harvested for measuring
ROS, Ca2+ and Ψm using flow cytometry. As shown in
Figure 4A, in NCI-H460 cells, gefitinib did not significantly

affect ROS production. However, 6-24 h BITC treatment
increased ROS production but 48 h treatment did not
significantly affect ROS production. Similarly, while 6-12 h
treatment of NCI-H460/G cells led to increased ROS
production, 24-48 h treatment did not significantly affect
ROS production (Figure 4A). Figure 4B indicates that
gefitinib significantly increased Ca2+ release in parental cells
but had no significant effect on Ca2+ release from resistant
cells. BITC increased Ca2+ release at 12-48 h treatment in
both NCI-H460 and NCI-H460/G cells, however, at 48 h
treatment, Ca2+ production was lower than that at 24 h
treatment in NCI-H460/G cells. Gefitinib significantly
reduced Ψm in NCI-H460 cells but had no effect on NCI-
H460/G cells. BITC also reduced Ψm at 6-48 h and 24-48 h
treatment in NCI-H460 and NCI-H460/G cells, respectively
(Figure 4C). 
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Figure 2. Benzyl isothiocyanate (BITC) induced apoptotic cell death in NCI-H460 and NCI-H460/G cells. Cells were treated with gefitinib (G; 
40 μM) or BITC (25 μM) for 6, 12, 24 and 48 h and were measured for apoptotic cell death using annexin V/propidium iodide (PI) double staining
as described in Materials and Methods section. A: Representative cytograms. B: Quantitative presentation of data. Significantly different from the
control (C) at **p<0.01 and ***p<0.001 as analyzed by Dunnett test.



BITC induced caspase-3, -8 and -9 activities in NCI-H460
and NCI-H460/G cells. Cells were treated with gefitinib (40
μM) or BITC (25 μM) for 6, 12, 24 and 48 h, and the
activities of caspase-3, -8 and -9 were measured using flow
cytometry. The results indicated that gefitinib significantly
increased caspase-3, -8 and -9 activities in NCI-H460 cells,
but not in the NCI-H460/G cells (Figure 5). BITC
significantly increased the activity of caspase-3 (Figure 5A)
and caspase-8 (Figure 5B) at 48 h treatment in NCI-H460
cells and at 12-48 h treatment in NCI-H460/G cells, but at 6
h reduced caspase-3 and -8 activities in NCI-H460/G cells
(Figure 5A and B). Results also showed that BITC increased
caspase-9 activity at 24-48 h treatment in NCI-H460 cells but
only at 48 h in NCI-H460/G cells (Figure 5C). 

BITC altered expression of apoptosis-associated proteins in
NCI-H460 and NCI-H460/G cells. In order to ascertain the
molecular mechanisms of BITC-induced apoptotic cell
death in NCI-H460 and NCI-H460/G cells, protein
expression of BITC-treated cells was examined by western
blotting. The results indicate that BITC increased AIF,
cleaved caspase-3, and caspase-9 (Figure 6A), XIAP and

cytochrome c (Figure 6B), BAX, ENDO G and PARP (86
kDa) (Figure 6C), GADD153, calpain 1, caspase-7 and
ATF6α (Figure 6D), but reduced the expression of BCL2
(Figure 6B), BID (Figure 6C), GRP78 and IRE1α (Figure
6D) in NCI-H460 cells. In NCI-H460/G cells, BITC
increased cleaved caspase-3 and -9 (Figure 6A), cytochrome
c (Figure 6B), BAX, ENDO G and PARP (86 kDa) (Figure
6C), GADD153, caspase-7 and ATF6α (Figure 6D), but
reduced AIF (Figure 6A), BID (Figure 6C), calpain 1,
GRP78 and IRE1α (Figure 6D).

Discussion

It is well documented that gefitinib has been used clinically
for patients with lung cancer and significantly suppresses
cancer cell proliferation and total cell viability. Some
patients with lung cancer who were treated with gefitinib
became gefitinib-resistant (27, 28) that led to treatment
failure. Currently, many studies are focused on finding
natural compounds for treating lung cancer to increase
efficiency of treatment. BITC can inhibit the growth of
human glioma U87MG cells outside the body via causing
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Figure 3. Benzyl isothiocyanate (BITC) induced chromatin condensation in NCI-H460 and NCI-H460/G cells. Cells were treated with gefitinib (G;
40 μM) or BITC (25 μM) for 6, 12, 24 and 48 h and were stained with 4’,6-diamidino-2-phenylindole (DAPI) and photographed using fluorescence
microscopy (A) and quantified (B) as described in the Materials and Methods section. Significantly different from the control (C) at *p<0.05,
**p<0.01 and ***p<0.001 as analyzed by Dunnett test.



oxidative stress (29). There is much evidence to show that
BITC presents anticancer activities in vitro and in vivo (14,
30-33), and other reports also showed BITC-induced
apoptotic cell death in gefitinib-resistant PC9 lung cancer
cells (17). But there are no reports on gefitinib-resistant NCI-
H460 human lung cancer cells (NCI-H460/G cells). In the
present study, we investigated whether or not BITC affects

total cell viability of NCI-H460/G cells and then further
investigated the possible molecular mechanism in vitro. We
found that in NCI-H460/G cells, BITC i) significantly
reduced the total viable cell number, and induced apoptotic
cell death; ii) induced chromatin condensation; iii) increased
production of ROS and Ca2+, reduced Ψm, and increased
caspase-3, -8 and -9 activities; iv) increased expression of
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apoptotic-associated proteins such as cleaved caspase-3 and
-9. We also used normal NCI-H460 as positive control
throughout the whole study. 

Firstly, we generated gefitinib-resistant NCI-H460 cells for
examining the effects of BITC on survival and found similar
results as reported by another group showing that BITC
affects human lung cancer and gefitinib-resistant lung cancer
cell lines (17). We further found that BITC induced apoptotic
cell death in both cell lines by DAPI staining and annexin
V/PI double staining, which are accepted methods for
measuring apoptotic cell death. Induction of cancer cell
apoptosis is one of the best strategies for anticancer drug
therapy (34, 35). In the present study, we found that BITC
increased ROS and Ca2+ but reduced Ψm in both NCI-H460
and NCI-H460/G cells. It is well known that ROS is involved
in cancer cell death and ROS increases the induction of
autophagy when cells are under starvation or stress conditions
(36). The Ca2+ uptake into the mitochondrial matrix is related
to several cellular function (37). The endoplasmic reticulum

(ER) stress apoptotic pathway, which includes ROS and Ca2+
production following the activation of caspase-3, causes
apoptosis (38). Thus, we found that BITC treatment of NCI-
H460/G cells induced apoptotic cell death, involving ROS
through ER stress.

The mitochondria are associated with the stimulation of
apoptosis in the intrinsic signaling pathway (39, 40). Based
on the results from western blotting (Figure 6), BITC
increased AIF (Figure 6A) and cytochrome c (Figure 6B) in
NCI-H460 cells. These results also further confirm that
BITC reduced Ψm (Figure 4C). BITC increased the
expressions of cleaved caspase-9 and -3 (Figure 6A); pro-
apoptotic protein BAX (Figure 6C); caspase-7 and ATF6α
(Figure 6D) in both cell types. BCL2 family proteins are
associated with mitochondria-dependent pathway and death
receptor dependent pathway (38, 41). Furthermore, the BCL2
family includes pro-apoptotic proteins such as BAX and anti-
apoptotic proteins such as BCL2 and both proteins affect the
function of mitochondria (42).
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Figure 4. Benzyl isothiocyanate (BITC) affected reactive oxygen species (ROS) (A), intracellular Ca2+ (B) and mitochondrial membrane potential
(Ψm) (C) in NCI-H460 and NCI-H460/G cells. Cells (1×105 cells/well) were incubated with gefitinib (G; 40 μM) or BITC (25 μM) for 6, 12, 24
and 48 h and ROS, Ca2+ and ΔΨm were then measured as described in the Materials and Methods section. Significantly different from the control
(C) at **p<0.01 and ***p<0.001 as analyzed by Dunnett test.
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Results from Figure 4A indicated that BITC increased ROS
production at 6-24 h treatment in NCI-H460 cells and at 6-12
h treatment in NCI-H460/G cells. Furthermore, expression of
markers of ER stress, such as GADD153, was increased at 6-
24 h treatment of NCI-H460/G cells but only at 48 h treatment
was increased in NCI-H460 cells (Figure 6D). ATF6α was
increased in both NCI-H460 and NCI-H460/G cells after
treatment with BITC (Figure 6D). Thus, we may suggest that
BITC-induced apoptotic cell death may involve ER stress.
Caspase-7 activation increased in both cell types after treatment
with BITC (Figure 6D). The ER is a central intracellular
organelle in the secretory pathway and exerts a cytoprotective
role but when ER stress becomes too severe or prolonged, it
may lead to a toxic signal which causes tumor cell death (43,
44). Based on these observations, BITC induced apoptotic cell
death in NCI-H460 and NCI-H460/G cells in vitro may occur
through ER stress and mitochondria-dependent pathways.
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