
Abstract. Background/Aim: Melatonin, an endogenously
secreted indoleamine hormone that is produced in the pineal
gland, is known to possess antitumor effect via various
mechanisms including induction of apoptosis and pro-
oxidant effects in various cancer cells, including colorectal
cancer (CRC). In our study, we hypothesized that melatonin
enhances the anticancer effects via suppression of PrPC and
PINK1 levels, thereby increasing superoxide production.
Materials and Methods: To investigate the antitumor effects
of melatonin in CRC cells, assessing its effects on
mitochondrial dysfunction, production of superoxide,
induction of endoplasmic reticulum stress, and cellular
apoptosis were assessed. Results: Melatonin was found to
decrease the expression of PrPC and PINK1, and increase
superoxide accumulation in the mitochondria. In addition,
PrPC-knockdown potentiated the effects of  melatonin
resulting further in significantly reduced expression of
PINK1 and increased superoxide production in CRC. si-
PRNP-transfected CRC cells treated with melatonin
increased the production of intracellular superoxide and
induced endoplasmic reticulum stress associated protein, and
apoptosis. Conclusion: Melatonin induces mitochondria-
mediated cellular apoptosis in CRC cancer cells via a PrPC-
dependent pathway. PrPC knockdown combined with
melatonin amplifies the effects of melatonin, suggesting a
novel therapeutic strategy in targeting CRC cells.

Colorectal cancer (CRC) is one of the most commonly
diagnosed cancers in the world, placing it as the most
common cause of mortality (1). Uncontrolled proliferation
of cancer cells is the hallmark of cancer cells and along with
this, the ability to metastasis and recurrence makes it
excessively hard to treat (2). In response, patients go on
extensive chemotherapies inducing apoptosis of target cancer
cells in the body, as well as surgery to remove the cancer
tumors (3). There has been a proliferation of research in
drugs used to control CRC and the progression of the
disease. For example, oxaliplatin, a bifunctional alkylating
agent, can inhibit DNA replication and transcription by
covalently binding to DNA, resulting in induction of
apoptosis (4). However, drug resistance of cancer cells is a
major limitation in chemotherapy (5). Although the mutation
of anticancer drug target protein, defective DNA damage
repair, enhanced anticancer drug efflux, and alternative
compensating signaling pathways are potential mechanisms
of drug resistance, their toxicity could lead to numerous side-
effects, even favoring growth of cancer cells by killing the
patients’ immune system. Thus, natural compounds have
been known to be highly desirable clinically due to their
minimal side-effects which are more prevalent in
chemotherapies and other drugs. Not surprisingly, there exist
studies that show natural compounds with anti-tumor effects
to be a promising strategy for cancer prevention and therapy
(6-9). More studies on novel compounds and therapeutic
mechanisms associated with the compounds are desirable for
developing efficient therapeutic strategies targeting CRC.

In addition to genetic factors that contribute to the
occurrence of the disease, factors such as diet, physical
activity, and physiological homeostasis are among the
important factors associated with occurrence of CRC (10,
11). Melatonin (N-acetyl-5-methoxytryptamine) is a cytokine
secreted by the pineal gland in the body during sleep that has
been known to possess multiple physiological homeostatic
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functions and offer numerous benefits associated with sleep.
More specifically, melatonin plays a role in induction of
sleep, regulation of circadian rhythm, immunomodulation,
reduction of oxidation (12, 13). Interestingly, studies show
that melatonin possesses anti-cancer effects, and in a study
related to colorectal cancer, it was shown to induce
senescence and apoptosis of the CRC cells (14, 13). Cancer
cells treated with melatonin show enhanced production of
reactive oxygen species (ROS), resulting in dysfunctional
mitochondria and thus decreased cell viability (15-17). Such
accumulating evidence instigate further investigations on the
effects of melatonin in inducing apoptosis in cancer cells via
ROS generation and mitochondria mediated apoptosis.

A previous study suggested that melatonin exerts its
effects through cellular prion protein (PrPC)-dependent
pathway (18). PrPC, a cell surface protein tethered to the
membrane by glycosylphosphatidylinositol anchor, is highly
expressed in cells of various tissues including nervous,
muscle and heart tissue (19-21). Although mutated prion
proteins are most widely known for their neurodegenerative
properties, several studies have indicated that cellular prion
proteins possess a crucial role in various physiological
functions, such as cell proliferation, apoptosis, invasion,
metastasis and drug resistance in various cancers (22, 23).
Our previous studies demonstrated that PrPC is related to
cancer proliferation, and that knockdown of PrPC inhibits
colorectal cancer cell growth (7) and induces tumor cell
death (24). PrPC levels in cancer are associated with ROS-
mediated endoplasmic reticulum (ER) stress, thereby
destroying mitochondria and ER to induce cell death (25).
PTEN-induced putative kinase 1 (PINK1), a protein located
to the mitochondrial outer membrane, maintains
mitochondria homeostasis through mitochondria quality
control pathway (26). In damaged mitochondria, PINK1
recruits parkin and autophagy related proteins and results in
degradation of damaged mitochondria through autophagy
(27). In a recent study, it was shown that PINK1 functions
as a regulator of cell cycle progression and has tumor
promoting properties (28). 

In this study, the effects of melatonin on endoplasmic
reticulum stress and apoptosis of colorectal cancer cells was
examined. Furthermore, the role of PrPC in mitochondria-
mediated apoptosis by induction of superoxide and deduction
of PINK1 expression was studied.

Materials and Methods
Preparation of Melatonin. Melatonin was obtained from Sigma (St.
Louis, MO, USA). Melatonin powder was dissolved in 100% ethanol,
filter-sterilized through a 0.45 μm pore filter (Sartorius Biotech GmbH,
Gottingen, Germany), and aliquots were stored at 4˚C until use.

Cells and cell culture. The human colorectal cancer cell line (SNU-
C5/WT) was obtained from the Chosun University Research Center

for Resistant Cells (Gwangju, Republic of Korea). The cells were
maintained in RPMI 1640 supplemented with 10% fetal bovine
serum, l-glutamine, and antibiotics (Biological Industries, Beit
Haemek, Israel) at 37˚C with 5% CO2 in a humidified incubator.

Cell viability assay. Exponentially growing colon cancer cells (SNU-
C5/WT) were subconfluently incubated in 96-well plates with
melatonin (0-1 mM) for 24 h and various periods of time (0-24 h).
Cell viability was determined using a modification of the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay,
which is based on the conversion of the tetrazolium salt 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-
2-tetrazolium to formazan by mitochondrial dehydrogenase. Formazan
was quantified by measuring absorbance at 570 nm, using a microplate
reader (Tecan, Männedorf, Switzerland).

Western blot analysis. Total cell protein was extracted by utilizing
RIPA lysis buffer (Thermo Fisher Scientific, Rockford, IL, USA).
Cell lysates were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and proteins were transferred to
polyvinylidene fluoride membranes (Millipore, Billerica, MA,
USA). The membranes were blocked with 5% skim milk and
incubated with primary antibodies against PrPC, phospho-protein
kinase R-like endoplasmic reticulum kinase (PERK), PERK,
phospho-eukaryotic initiation factor 2-alpha  (eIF2α), eIF2α.
activating transcription factor 4 (ATF4), phospho-c-JUN N-terminal
kinase  (JNK), total JNK, phospho-p38, Bcl-2-associated X protein
(BAX), cleaved Caspase-3, cleaved poly [ADP-ribose] polymerase
1 (PARP1), β-Actin (Santa Cruz Biotechnology, Dallas, TX, USA),
PTEN-induced putative kinase 1 (PINK1), CCAAT-enhancer-
binding protein homologous protein (CHOP) (Novus Biologicals,
Littleton, CO, USA). After incubation of membranes were incubated
with peroxidase conjugated goat anti-mouse or anti-rabbit IgG
secondary antibodies (Thermo Fisher Scientific). Protein bands were
visualized by utilizing enhanced chemiluminescence reagents
(Amersham Biosciences, Uppsala, Sweden).

Inhibition of PrPC expression by small RNA interference. SNU-C5/WT
cells were seeded in 60 mm dishes, grown up to 75% confluence, and
transfected with siRNA in serum-free Opti-MEM (Gibco BRL) by
utilizing Lipofectamine 2000 following the manufacturer’s instructions
(Thermo Fisher Scientific). At 48 h after transfection, the cells were
treated with melatonin for 24 h. Total protein extracts were analyzed
by western blot. The siRNA used to target PRNP (The PRNP-siRNA
no. 1 sequence: 5’-UCACCGAGACCGACGUUAA-3’, no. 2
sequence: 5’-GAUCGAGCAUGGUCCUCUU-3’, no. 3 sequence: 5’-
AGAUGUGUAUCACCCAGUA-3’ and no. 4 sequence: 5’-GACCG
UUACUAUCGUGAAA-3’) and a scrambled sequence (The scramble-
siRNA no. 1 sequence: 5’-UGGUUUACAUGUCGACUAA-3’, no. 2
sequence: 5’-UGGUUUACAUGUUGUGUGA-3’, no. 3 sequence: 5’-
UGGUUUACAUGUUUUCUGA-3’, and no. 4 sequence: 5’-
UGGUUUACAUGUUUUCCUA-3’) was purchased by Dharmacon
(Lafayette, CO, USA).

Flow cytometric analysis. To measure mitochondrial superoxide,
SNU-C5/WT cells were stained with MitoSOX red (Thermo Fisher
Scientific) for 30 min at 37˚C and washed with PBS three times. To
confirm apoptosis, the cells were stained with Annexin V-
fluorescein isothiocyante (FITC) and propidium iodide (PI) (Sigma).
Each sample was quantitively analyzed using CyFlow Cube 8
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(Sysmex Partec, Münster, Germany). Data analysis was performed
using the FCS Express software package (De Novo Software).

Statistical analyses. Results are expressed as the mean±SEM and
analyzed by ANOVA. In some experiments, this was followed by a
comparison of the treatment mean with the control using a
Bonferroni-Dunn test. Data were considered to be significantly
different at values of p<0.05.

Results

Melatonin decreases cell viability and increases production of
superoxide in SNU-C5/WT cells. To evaluate the effect of
melatonin on SNU-C5/WT cells, cell viability was measured by
utilizing the MTT assay after treatment of SNU-C5/WT cells
with melatonin (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mM) at
various periods of time (0, 6, 12 and 24 h). Melatonin treatment
was shown to reduce the cell viability of SNU-C5/WT cells in
dose- and time-dependent manner (Figure 1A and B). In order
to assess superoxide production in SNU-C5/WT cells treated

with Melatonin, the production of mitochondrial superoxide was
examined by flow cytometric analysis (Figure 1C and D). The
level of mitochondrial superoxide was significantly increased
after treatment with melatonin (1 mM). These results suggest
that melatonin inhibits cell viability of SNU-C5/WT cells and
increases superoxide production.

Melatonin suppresses the expression of PrPC and PINK1 and
increases the production of mitochondrial superoxide in
SNU-C5/WT cells. In order to assess the effect of melatonin
on the expression of PrPC and PINK1 in SNU-C5/WT, the
cells were treated with various concentrations of melatonin
(0, 0.2, 0.6 and 1 mM) at various time periods (0, 6, 12 and
24 h). Western blot analysis was performed to evaluate the
expression of PrPC and PINK1. The results show that PrPC
and PINK1 expression are significantly reduced upon
melatonin (1 mM) treatment for 24 h (Figure 2A-D).

Next, to measure the expression of PrPC and PINK1, SNU-
C5/WT cells were transfected with si-PRNP following
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Figure 1. Melatonin-mediated inhibition of cell viability and induction of mitochondrial superoxide production in SNU-C5/WT colorectal cancer
cells. Cell viability was measured using the MTT assay. (A) SNU-C5/WT colon cancer cells were treated with melatonin (0-1 mM) for 24 h (n=3).
(B) SNU-C5/WT colon cancer cells were treated with melatonin (1 mM) for various periods of time (0, 6, 12 and 24 h) (n=3). Values represent the
means±SEM. *p<0.05 vs. control and **p<0.01 vs. control. (C) SNU-C5/WT colon cancer cells were treated with melatonin (1 mM) for 24 h and
superoxide production was assayed using flow cytometric analysis of MitoSOX red staining. (D) The quantitation of the percentage of mitochondrial
superoxide levels (n=3). Values represent means±SEM. **p<0.01 vs. control.



treatment with melatonin (1 mM). In si-PRNP transfected cells,
melatonin treatment significantly reduced the expression of
PrPC and PINK1 (Figure 3A and B). In order to evaluate the
effect of melatonin on the production of superoxide in SNU-
C5/WT flow cytometric analysis was performed. MitoSOX red
staining showed that knockdown of PrPC induced significant
production of mitochondrial superoxide upon melatonin

treatment compared to control (Figure 3C and D). These results
demonstrate that the knockdown of PrPC significantly
potentiated the effects of melatonin.

Melatonin induces endoplasmic reticulum (ER) stress in
SNU-C5/WT cells through regulation of PrPC expression.
To assess the effect of melatonin-induced ER stress in si-
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Figure 2. Melatonin mediated inhibition of cellular prion protein (PrPC) and PINK1 in SNU-C5/WT colorectal cancer cells. SNU-C5/WT cells were
treated with different concentrations of melatonin. PrPC (A) and PTEN-induced putative kinase 1 (PINK1) (B) was determined by western blot
analysis. The bar graph indicates the quantification of expression levels as determined by densitometry relative to β-actin (n=3). Values represent
the means±SEM. **p<0.01 vs. control. (C) SNU-C5/WT cells were treated with melatonin for different periods of time. PrPC (C) and PINK1 (D)
were determined by western blot analysis. The bar graph indicates the quantification of expression levels as determined by densitometry relative to
β-actin (n=3). Values represent the means±SEM. **p<0.01 vs. control.
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Figure 3. The effect of PrPC on mitochondrial superoxide production in
SNU-C5/WT colorectal cancer cells via treatment with melatonin. The
expression levels of PrPC (A) and PINK1 (B) in SNU-C5/WT cells
transfected with si-PRNP or si-Scramble following treatment with
melatonin (1 mM) for 24 h. The bar graph indicates the quantification
of expression levels as determined by densitometry relative to β-actin
(n=3). Values represent the means±SEM. **p<0.01 vs. control, #p<0.05,
##p<0.01 vs. treatment with melatonin, and $$p<0.01 vs. si-PRNP treated
with melatonin. (C) Mitochondrial superoxide was measured using flow
cytometry analysis for MitoSOX red staining. (D) The quantitation of the
percentage of mitochondrial superoxide levels (n=3). Values represent
means±SEM. **p<0.01 vs. control, #p<0.05 vs. treatment with
melatonin, and $p<0.05 vs. si-PRNP treated with melatonin.



PRNP transfected SNU-C5/WT cells, the expression and
activation of ER-stress associated proteins, such as PERK,
eIF2α, ATF4, IRE1α, JNK, and p38 was examined by
western blot analysis (Figure 4A-F). si-PRNP transfected
SNU-C5/WT treated with melatonin (1 mM) showed
significantly higher levels of expression of the ER stress
marker (ATF4) and of the phosphorylation of ER stress
regulators (PERK, eIF2α, IRE1α, JNK and p38) compared
to control. These findings indicate that melatonin induces

ER stress and knockdown of PrPC enhances melatonin-
mediated induction of ER stress.

Inhibition of PrPC expression enhances melatonin-mediated
effect of apoptosis in SNU-C5/WT cells. In order to
investigate melatonin-mediated effect on apoptosis in si-
PRNP transfected SNU-C5/WT cells, ER stress marker
(CHOP) and apoptosis associated proteins, including BAX,
cleaved caspase3, and cleaved PARP1 were determined by
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Figure 4. The effect of PrPC on melatonin-induced endoplasmic reticulum (ER) stress in SNU-C5/WT colorectal cancer cells. The expression levels
of protein kinase R-like endoplasmic reticulum kinase (PERK) (A), eukaryotic initiation factor 2-alpha (eIF2α) (B), activating transcription factor
4 (ATF4) (C), inositol-requiring protein 1 alpha (IRE1α) (D), c-Jun N-terminal kinase (JNK) (E), and p38 (F) were determined by western blot
analysis in SNU-C5/WT cells transfected with si-PRNP or si-Scramble following treatment with melatonin (1 mM) for 24 h. The bar graph indicates
the quantification of expression levels as determined by densitometry relative to β-actin (n=3). Values represent the means±SEM. *p<0.05 vs.
control, **p<0.01 vs. control, #p<0.05 vs. treatment with melatonin, ##p<0.01 vs. treatment with melatonin, $p<0.05 vs. si-PRNP treated with
melatonin and $$p<0.01 vs. si-PRNP treated with melatonin.
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Figure 5. The effect of PrPC on melatonin-enhanced ER stress-mediated apoptosis in SNU-C5/WT colorectal cancer cells. The expression levels of ER
stress marker (CCAAT-enhancer-binding protein homologous protein (CHOP)) (A) and apoptosis associated proteins, including Bcl-2-associated X protein
(Bax) (B), cleaved caspase3 (C), and cleaved poly [ADP-ribose] polymerase 1 (PARP1) (D), were determined by western blot analysis in SNU-C5/WT
cells transfected with si-PRNP or si-Scramble following treatment with melatonin (1 mM) for 24 h. The bar graph indicates the quantification of expression
levels as determined by densitometry relative to β-actin (n=3). Values represent the means±SEM. **p<0.01 vs. control, #p<0.05 vs. treatment with
melatonin, ##p<0.01 vs. treatment with melatonin and $$p<0.01 vs. si-PRNP treated with melatonin. (E) Apoptosis of cells was measured utilizing
propidium iodide (PI)/annexin V staining and flow cytometric analysis. (F) Standard quantification of PI/annexin V-positive apoptotic cells (n=3). Values
represent the mean±SEM. **p<0.01 vs. control, ##p<0.01 vs. treatment with melatonin and $$p<0.01 vs. si-PRNP treated with melatonin.



western blot analysis. Under melatonin-mediated induction
of ER stress, knockdown of PrPC significantly enhanced
CHOP, Bax, cleaved caspase3 and cleaved PARP1, compared
to untreated cells (Figure 5A-D). Melatonin significantly
increased the percentage of early and late apoptotic cells to
24.47% compared to control (2.79%). In addition, si-PRNP
transfected SNU-C5/WT treated with melatonin show
significant increase in early and late apoptotic cells to
42.81% (Figure 5E and F). These findings indicate that

combination of si-PRNP and melatonin induces apoptosis of
SNU-C5/WT via ER stress induction.

Discussion

In this study, the effects of melatonin, a hormone secreted by
the pineal gland, on the viability of cancer cells was
investigated. Melatonin treatment of SNU-C5/WT induced
superoxide levels and decreased cell viability. Moreover,
melatonin inhibited PrPC expression and subsequently reduced
PINK1 expression ultimately destroying mitochondrial
homeostasis. In combination with melatonin, knockdown of
PrPC induced further inhibition of PINK1 expression and
production of superoxide, melatonin-mediated ER stress, and
ultimately cellular apoptosis. Together, melatonin treatment and
PrPC knockdown led to increased apoptosis of SNU-C5/WT
via PrPC-dependent mitochondria/ER signaling. Our study
suggests melatonin as a novel anti-cancer agent.

Melatonin, a hormone that is most widely known for its sleep
inducing abilities has the potential to regulate CRC cell growth
by inducing apoptosis. Several studies demonstrated that
melatonin causes cancer cell death via mitochondrial reactive
oxygen species production (15, 16) and inhibits tumor growth
(8, 29). In addition, another study suggested that melatonin
regulates Endothelin 1 (ET-1) levels and suppresses tumor
progression in CRC (30), suggesting that melatonin has a clear
potential in cancer therapy. In accordance with our previous
study, SNU-C5/WT cells, when treated with melatonin, show
decreased cell viability and increased mitochondrial dysfunction
in dose and time dependent manner. Many cancer cells show
elevated ROS production compared to normal cells, because of
oncogenic mutation, increased metabolic activity, and cancer
microenvironment. Specifically, superoxide has been known as
one of the most potent mitochondrial deregulators and excess
superoxide is associated with apoptosis in many cancer cells
(31-35). Our results also suggested that melatonin caused an
increase in superoxide production in cancer cells, leading to the
apoptotic potentials of the cells after the treatment.

Previous studies suggested that PrPC plays a role in the
protection of cells against oxidative stress by clearing up
toxic superoxide dismutase (SOD) activities (36). In addition,
studies have shown that when the gene for PrPC, PRNP, is
silenced, the activities of antioxidant enzymes including
catalase and glutathione reductase are reduced (37, 38). Thus,
in this study the effects of melatonin in the induction of ROS
and mitochondrial dysfunction through PrPC dependent
pathway was examined. It was found that PINK1 expression
is decreased even further when PrPC was silenced via si-
PRNP transfection compared to treatment with melatonin
alone, and that knockdown of PrPC increased superoxide
production in CRC cells even further than melatonin
treatment alone. These results are supported by previous
studies showing that melatonininduced ROS production of
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Figure 6. Schematic illustrating the mechanism of melatonin-mediated
anticancer effects in SNU-C5/WT colorectal cancer cells. In colorectal
cancer cells, melatonin induces the production of superoxide and
decreases the levels of PrPC. Silencing PrPC expression enhanced the
anticancer effects of melatonin via the production of mitochondrial
superoxide, activation of ER stress- and apoptosis- mediated proteins.



CRC cells lines (16, 15), and this effect was mediated by
decrease of PINK1 expression (39). Thus, our results suggest
that melatonin plays a critical role in superoxide production
and PINK1 expression in SNU-C5/WT cells via PrPC
dependent pathway. Further study is required to investigate
the precise mechanism of the effects of melatonin-mediated
PINK and PrPC expression in CRC cells. 

A previous study has suggested that PrPC function may be
related to antioxidant activities against ROS production in
cancer (40). Other studies on PrPC and cancer indicated that
PrPC expression levels associate with ROS, ER stress (25) and
induction of tumor cell death (24, 7). The results of this study
support the hypothesis that ER stress is involved in
melatonin/PrPC, mediated apoptosis of cancer cells. Our results
from western blotting analysis suggest that melatonin increased
ROS mediated ER stress associated proteins resulting in
alterations in the levels of oxidative stress related proteins,
including p-PERK, p-eIF2α, ATF4, p-IRE1α, p-JNK, p-P38,
and CHOP and subsequent apoptosis associated proteins, such
as BAX, c-Caspase3, and c-PARP1, finally leading to cancer
cell death (41, 42). In addition, our western blot analysis results
show that silencing of PrPC magnifies the effects of melatonin
on ER and apoptosis, highlighting the importance of PrPC in
melatonin mediated cancer therapy. These results signify the
importance of combination of melatonin and silencing PrPC in
CRC cell treatment which regulates superoxide production and
ER stress. However, further mechanistic studies are required to
investigate whether combination of melatonin and anticancer
drugs have synergistic effects in CRC cancer.

In summary, our findings reveal that melatonin inhibits cell
viability via excessive production of superoxide and increased
PrPC expression. In addition, silencing PrPC enhances
melatonin mediated accumulation of superoxide and activates
ROS mediated ER stress. Finally, apoptosis of CRC cancer
cells is activated (Figure 6). Further studies are necessary to
understand how melatonin regulates PrPC expression in CRC
cancer. This study demonstrated that combination of melatonin
and silencing PrPC in SNU-C5/WT cells results in increased
anticancer effects. These findings indicate that understanding
the effect of melatonin and PrPC in colorectal cancer may help
design a novel therapeutic strategy in cancer therapy.
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