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Abstract. Background/Aim: Malignant gliomas remain
refractory to several therapeutic approaches and the
requirement for novel treatment modalities is critical to
combat this disease. Etoposide is a topoisomerase-11
inhibitor, which promotes DNA damage and apoptosis of
cancer cells. In this study, we prepared albumin with
embedded magnetic nanoparticles and etoposide for in vitro
evaluation of combined hyperthermia and chemotherapy.
Material and Methods: Magnetic nanoparticles were
prepared by a modified co-precipitation method in the
presence of human serum albumin and etoposide. A cellular
proliferation assay was used to determine the effects of these
nanostructures on the viability of U87 glioma cells in an
alternating magnetic field. Results: The in vitro experiments
showed that cell viability decreased to 59.4% after heat
treatment alone and to 53.8% on that with free etoposide,
while combined treatment resulted in 7.8% cell viability.
Conclusion: Integrating hyperthermia and chemotherapy
using albumin co-embedded magnetic nanoheaters and
etoposide may represent a promising therapeutic option for
glioblastoma.

Glioblastoma multiforme (GBM), an astrocytic glioma, is
one of the most common malignant primary brain tumors,
characterized by intense and aberrant vascularization and
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high resistance to radiotherapy and chemotherapy (1, 2). The
main reasons for the poor prognosis of GBM are diagnosis
at a late stage and lack of efficient therapies. The standard
therapeutic protocols for the treatment of GBM have only
limited benefits and provide a median survival of patients of
no longer than 15 months (3).

Etoposide (VP-16) is a semi-synthetic derivative of a
naturally occurring antibiotic, podophyllotoxin (Figure 1A),
introduced into cancer clinical trials in 1971, and U.S. Food
and Drug Administration-approved since 1983 (4-6). It
inhibits topoisomerase II re-ligation of cleaved DNA
molecules, resulting in the accumulation of double-strand
DNA breaks. This leads to late S and G, cell-cycle arrest.
Previous studies have reported that etoposide is effective
against glioma cell lines and it is currently widely used in
the treatment of lung and ovarian cancer, as well as recurrent
childhood brain tumors. Effective against GBM at high
doses, etoposide leads to toxic side-effects such as nausea,
weight loss, alopecia, myelosuppression with leucopenia, and
thrombocytopenia (7, 8).

Nanostructures are nowadays widely used in experimental
and clinical medicine applications as diagnostic, imaging,
and therapeutic agents. Magnetic nanoparticles (MNPs)
exposed to an external alternating magnetic field (AMF) are
heated through either hysteresis loss or relaxation loss
depending on their size and properties. In magnetic
hyperthermia, MNPs act as nanoheaters through energy
conversion from external AMF into heat. Because cancer
cells are killed at a temperature of about 43°C, whereas
normal cells survive at these higher temperatures,
magnetically mediated hyperthermia induced by AMF can be
used to selectively destroy cancer cells in which magnetic
particles have accumulated.

Thermotherapy involving the use of an AMF in
conjunction with MNPs has proven to be an effective method
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for treating patients with GBM. Initial tests have shown that
MNPs have minimal toxicities for patients, although further
testing must be performed to confirm these findings (9).
Much like other methods that are used to combat GBM,
MNPs do not serve as a cure on their own; they have been
shown to be most effective when used as a combination with
modalities, for example combining
fractionated radiotherapy with thermotherapy has been
shown to have a survival advantage in patients with relapsed
GBM (10).

Since the report by Zimmermann and Pilwat (11), MNPs
have attracted attention not only as nanoheaters for cancer
therapy (hyperthermia) but also because of their potential as
contrast agents for magnetic resonance imaging (MRI), and
magnetic drug targeting (12-18).

Our aim in this study was to demonstrate effectivity of
MNPs for integrated cancer therapy of the glioblastoma cell
line U87. For these purposes, we prepared MNPs
functionalized with human serum albumin (HSA) (19-21)
embedded with etoposide.

other treatment

Materials and Methods

Preparation of HSA immobilized MNPs. MNPs were prepared by a
modified co-precipitation method (19) in the presence of HSA
which facilitated the in sifu immobilization of crystallized MNPs by
the protein. A volume of 180 ml of deoxygenated water with 1 g of
HSA (Sigma, St. Louis, MO, USA) and 3 ml of ammonium
hydroxide (30%, w/v) under constant stirring and nitrogen flow, 20
ml of iron salts (1.08 g of FeCl3*6H,0 and 0.4 g of FeCl,*4H,0;
Centralchem, Bratislava, Slovakia) was added dropwise at room
temperature. The reaction mixture was then heated and processed at
70°C for another 15 min. The resulting products were dialyzed in
phosphate-buffered saline (20 mM, pH 7.4) to remove excess
ammonium hydroxide and residual iron salts. Five milligrams of
etoposide (BioVision, Inc., San Francisco, CA, USA) was dissolved
in 1 ml of dimethylsulfoxide (Centralchem) and the solution was
dropwise added to the desired amount of MNP-HSA. The mixture
was stirred at 900 rpm for 4 h. Unloaded etoposide was removed by
ultrafiltration (MW cutoff: 10,000 Da; Millipore, Merck, Darmstadt,
Germany) to obtain final stock of MNP-HSA-ETO (Figure 1B).

Etoposide release under AMF. The percentage of etoposide released
due to AMF heating was obtained from the total amount (WT) of
added etoposide in a MNP-HSA-ETO sample and the amount of
released etoposide (Wg) in supernatant after centrifugation (10000x
g, 30 min) using the formula (Wr/WT) x100%. The concentration
of etoposide was quantified using a calibration curve obtained from
absorbance measurement using UV MINI 1240 UV-VIS
spectrophotometer (Shimadzu, Kyoto, Japan).

Cell culture. U87-MG human glioblastoma cell lines were acquired
from the American Type Culture Collection (Manassas, VA, USA).
Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)
with Glutamax (ThermoFisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco, Waltham,
MA, USA) and 1% 5,000 U/ml Penn/Strep (ThermoFisher Scientific)
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in 96-well plates (Corning Inc., Corning, NY, USA) in a humidified
atmosphere of 95% air and 5% CO, at 37°C. The cells were seeded
at a density of 5x103 cells/well, 24 h before experiments.

Cell viability assay. The in vitro cell viability was performed using a
modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay (22). (Sigma, St. Louis, MO, USA) U87-MG cells were
plated (5000 in 100 pl of medium) into each well of a 96-well plate
and incubated for 24 h. Fifty microliters of etoposide, MNPs, or MNP-
HSA-ETO suspended in medium were added and incubated for 24 h.
The supernatant was carefully removed and 10 pl of media and 20 wl
of a 5 mg/ml MTT solution added and plates incubated for a further 3
h. As a control, 150 ul of PBS at pH 7.4 was added to cells in eight of
the wells. The supernatant in each well was aspirated and 150 pl of
dimethyl sulfoxide was added to solubilize the cells and MTT crystals.
After 1 h of shaking on an Eppendorf Thermomixer at 37°C and 400
rpm to dissolve all crystals, the blue color was read in a multiwell
scanning spectrophotometer at 540 nm using a microplate reader
(Multiskan GO spectrophotometer; ThermoFisher Scientific). Cell
viability was quantified by the relative absorbance of the drug-treated
wells to the control wells without drug treatment. The cell viability was
calculated by comparing the sample absorption to the one of the control
cells, which was by definition 100%.

Setup for application of electromagnetic hyperthermia. AMF with
a frequency of 3.5 MHz and an amplitude of 1.2 kA m~! was
generated using a 3.5 MHz radiofrequency generator (model GV6A;
ZEZ as., Rychnov nad Nisou, Czech Republic) with a power
dissipation of 6 kW. The coil-shaped and water-cooled antenna with
a diameter of 15 cm was made of three copper windings, connected
to a water-cooled resonance circuit which produced the
electromagnetic field. Magnetic field amplitude and frequency
produced in our equipment were within the safety range (23). For
the evaluation of the effect of hyperthermia, U87-MG glioma cells
were seeded on 35 mm Petri dishes (2x105 in 3 ml of growth
medium per dish). Prior to AMF heating, samples and controls were
incubated at 37°C for 15 min to stabilize temperature. During the
experiments samples were placed in the center of the induction coil
for the desired time. To measure the temperature changes over time
during exposure to the AMF, we used an optic fiber thermometer
FOB101 with automatic registration (Omega Engineering, Norwalk,
CT, USA). After the heat treatment, the suspension of U87-MG
glioma cells was diluted to 4.8 ml media and seeded in a 96-well
plate at a density of 5x103 cells/well.

Statistical analysis. The experiments were performed at least five
times. Data are expressed as the mean+standard deviation (SD).
Statistical correlation of data was checked for significance by
ANOVA and Student’s #-test. Values of p<0.05 were considered to
indicate a statistically significant difference.

Results and Discussion

In the present study, we firstly tested the effect of free
etoposide and evaluated its toxicity towards U87-MG glioma
cell in vitro using MTT assay. The quantification of etoposide
concentration was based on the strong absorption maximum
of this molecule at 480 nm. We, therefore, measured etoposide
absorbance at increasing concentrations (Figure 2). We found
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Figure 1. A: Chemical structure of etoposide. B: Schematic illustration of magnetic nanoheaters with human serum albumin carrying co-embedded
etoposide (ETO).
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Figure 2. UV absorption spectra of etoposide for samples with increasing concentration. Inset: Calibration curve of etoposide used for its

quantification.
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Figure 3. Viability of US7-MG glioma cells used for the determination of half-maximal inhibitory concentration of etoposide. Results are means+SD
from five independent experiments.
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Figure 4. Increase of temperature of human serum albumin magnetic nanoparticles (MNPs) (concentration of Fe=5 mg/ml) in an alternating
magnetic field as a function of time. Results are means+SD from five independent experiments.

a linear dependence of the absorbance (Abs) on concentration Embedded MNPs in MNP-HSA complex served as
(C) of etoposide (calibration curve) explicitly given by the  nanoheaters, therefore we further performed heating
equation C=251.26 x Abs, which we used for the etoposide  experiments in an AMF to test their ability to generate heat.
determination. From Figure 3, the half-maximal inhibitory = As shown in Figure 4, relatively rapid temperature increases
concentration (ICs) of etoposide was found to be 2.9 uM. were observed over the first 8 min. After 15 min, a slower
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Figure 5. Influence of increasing concentration of human serum albumin magnetic nanoparticles on the viabilty of U87-MG glioma cells after 15
min exposure to an alternating magnetic field. Results are means+SD from five independent experiments.
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Figure 6. An alternating magnetic field (AMF) induced release of etoposide from etoposide-carrying human serum albumin-embedded magnetic
nanoparticles according to irradiation time. Results are means+SD from five independent experiments.

rate of increase of temperature was established. These results For hyperthermia applications, the temperature of
indicate that the magnetite-based nanoheaters can sufficiently — cancerous tissue must reach 42-45°C for effective therapy,
elevate the temperature of the environment to induce and this is easily attainable using these MNPs. To test the
hyperthermia. Efficient heat dissipation can be attributed to  effect of MNP-mediated AMF-induced hyperthermia on cell
the superparamagnetic nature of MNPs and the Brown and  cultures, we irradiated glioma U87 cell culture containing an
Néel relaxation effect. increasing amount of MNP-HSA. The concentration of Fe in
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Figure 7. Comparison of viability of control U87-MG glioma cells with
cells treated using hyperthermia mediated by human serum albumin
magnetic nanoparticles in an alternating magnetic field, cells treated
with pure etoposide, and combined treatment using etoposide-carrying
human serum albumin magnetic nanoparticles in an alternating
magnetic field. Results are means+SD from five independent
experiments. *Significantly different at p<0.05.

MNPs was 0-15 mg/ml. Viability of cells was assessed again
using MTT assay. The results of this viability testing for
U87-MG cells are shown in Figure 5; 50% viability was
achieved using MNP-HSA with 4.5 mg/ml of Fe. These
results further show the suitability of these nanostructures
for anticancer hyperthermic therapy.

For even more efficient anticancer applications of
nanoparticles, where we wanted to integrate both
hyperthermia and chemotherapy for these purposes, we
prepared etoposide-containing MNP-HSA nanostructures.
The profile of controlled drug release from MNP-HSA-ETO
(concentration of Fe=5 mg/ml) was evaluated in the presence
of an AMF and at physiological temperature (37°C).
Etoposide release from MNP-HSA-ETO under an AMF was
~20% after 5 min of exposure, and increased to ~80% after
10 min (Figure 6). The heat produced from the magnetic
nanoheaters increased the temperature of MNP-HSA-ETO
and probably induced conformational change due to the
reversible denaturation of albumin, triggering the release of
the encapsulated drug. It is important that the initial burst
release, common for adsorptive binding of drugs to
nanoparticles, is avoided. Measurement of drug release at
physiological temperature (37°C) after 15 min was lower
than 0.5% of the encapsulated etoposide.

MNPs are also suitable for combined cancer
chemotherapy and hyperthermia (24-28). The effect of
AMF-induced MNP-HSA-ETO hyperthermia accompanied
by etoposide release can be determined through the
assessment of cell viability. For clinical applications it is
important to demonstrate synergistic combinatorial effect.
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In vitro hyperthermia experiments were performed under
AMF magnetic field on rat U87-MG glioma cells for 15
min, with MNP-HSA-ETO containing 3.6 mg/ml of Fe, with
and without 3 pM etoposide. Figure 7 shows the relative
number of U87-MG cells 24 h after different treatment
modalities. For electromagnetic hyperthermia treatment
(magnetic field was applied for 15 min) with MNP-HSA
with 3.6 mg Fe/ml, the viability was 59.4%. For 3 uM free
etoposide without nanoparticles, the relative cell number
was 53.8%. When the electromagnetic hyperthermia
treatment was performed with MNP-HSA-ETO (containing
the same concentration of Fe, as well as of etoposide), the
relative cell number decreased to only 7.8%, therefore in
our study, integration of hyperthermia and chemotherapy
killed 92.2% of U87-MG cells. The combined effect of
treatments was quantified according to (29) and the
combinatorial therapy was found to be synergistic.
Moreover, the increased cytotoxicity to cancerous cells
accompanied by a reduction of toxic effects on non-
cancerous cells is considered a promising improvement in
the therapeutic efficacy when etoposide is entrapped in
MNP-HSA-ETO. Such a feature may be ascribed to a
combination of higher etoposide delivery to cancerous cells
and faster release of etoposide from MNP-HSA-ETO within
the cells. The drug efflux from cancerous cells, resulting in
cancer resistance, could be avoided by nanoparticulation of
drugs, as they enter cells via endocytotic pathway.
Moreover, the metabolic activity of cancerous cells, which
is usually higher than that of non-cancerous cells, may
create a more acidic environment inside the cancerous cells,
resulting in MNP-HSA-ETO degradation, and consequently
more etoposide release and greater cytotoxicity.

As has been demonstrated in clinical studies (30-35), 6%
of etoposide is bound to HSA, heavily influencing its
pharmacokinetics. In this study, we made this shortcoming
an advantage, similar to the example of Abraxane, the non-
covalent complex of HSA with paclitaxel; this first FDA-
approved nanoparticulate drug formula has been proven to
have better pharmacokinetics than paclitaxel alone and to be
superior to the latter for tumor therapeutics (36).

Most of the studies in vivo use direct injection of MNPs
into the center of tumors. A more elegant approach is to use
high-gradient external magnets for the targeting of MNPs to
the tumors (12, 13), thereby avoiding adverse side-effects.
Another possibility found recently (18) is that MNPs
packaged into exosomes, which are efficiently endocytosed
by tumor cells, facilitate targeted tumor cell ablation via
magnetically induced hyperthermia.

Glioblastoma remains the most difficult-to-treat malignant
brain tumor due to its resistance to standard therapies and its
invasive growth into the normal brain. Multifunctional
MNPs are a promising nanoplatform for the imaging and
treatment of malignant brain tumors. The subject of our
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study was synthesis and applications of novel etoposide-
carrying HSA immobilized MNPs in order to increase the
amount of drug in tumors, mediate electromagnetic
hyperthermia and controlled drug release, and eliminate
adverse effects on healthy tissues. Moreover, as was recently
found (37), magnetic hyperthermia using MNPs and AMF
can increase the permeability of the blood-brain barrier
without perturbing other brain cells.

Our plan for the future is to study in vivo magnetic drug
targeting combined with AMF-controlled release and
hyperthermia using these MNPs, which may have many
important clinical applications.
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