
Abstract. Background: Aloe-emodin is an anthraquinone with
potential pharmacological properties, including numerous
antitumor properties. The purpose of the study was to determine
whether aloe-emodin induces mitotic death in cervical cancer
cells. Materials and Methods: Analysis of morphological
changes as surrogate mitotic death indicators in HeLa cells was
carried out using optical, fluorescence and electron microscopy.
Viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2-5-
diphenyltetrazolium bromide reduction assay. Cell-cycle
analysis was performed using flow cytometry. Results: Aloe-
emodin increased the number of multinucleate cells, giant and
micronuclear cells. There was a concentration-dependent
decrease in the mitotic index with a predominance of cells in
the metaphase of the mitotic process and inhibition of division
in the G2/M phase of the cell cycle. The presence of cells with
abnormal mitosis and cells with injury to the division spindle
was also demonstrated. Conclusion: Aloe-emodin induces
mitotic catastrophe in cervical cancer cells.

For many years, apoptosis has been recognized as the main
type of cell death. Recent studies have shown that treatment of
cancer apoptosis induced by chemotherapy drugs (including
plant origin) in addition to programmed cell death, may induce
alternative types of death in cancer cells, including mitotic
catastrophe (1, 2). Compounds inducing mitotic catastrophe in
HeLa cells is the subject of our research.

Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-9,10-
anthrachinone) is on anthraquinone found in the leaves and

roots of Rheum palmatum L. (3), Rhamnus frangula L.,
Rhamnus cathartica L. (4), Aloe barbadensis Mill., and Aloe
arborescens Mill. (5). Numerous studies indicate that aloe-
emodin is a compound with multiple biological activities,
and its antitumor mechanism of action is based on
proapoptotic and antiproliferative properties, and has still not
been fully elucidated (6, 7).

The aim of the study was to evaluate the effect of aloe-
emodin on morphological and biochemical changes in cervical
cancer cells with particular attention to changes that could
indicate cell death alternative to apoptosis, i.e. mitotic
catastrophe.

Materials and Methods

In vitro culture conditions. HeLa cells were cultured in dishes (Nunc)
at 37˚C and with 5% carbon dioxide in a DirectHeat CO2 incubator
(Thermo Fisher Scientific, Waltham, MA, USA). The culture was
carried out on Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), with the addition
of 1% of a mixture of antibiotics containing penicillin, streptomycin
and amphotericin B. Reagents were from Thermo Fisher Scientific.
Aloe-emodin (C15H10O5) was purchased from Sigma-Aldrich (St.
Louis, MO, USA). The cells were exposed to aloe-emodin at
concentrations of 1, 15, 30, 60 and 100 μM for 24 and 48 h.

Preparation of cells for morphological analysis. The cells (control
and test) were grown on sterile cover slides in culture dishes. After
24 and 48 hours of exposure to aloe-emodin, the cells were fixed in
methanol, stained with Harris hematoxylin (Sigma-Aldrich)
followed by eosin solution (Sigma-Aldrich). The preparations were
dehydrated with increasing series of alcohol, cleared in xylene and
immersed in Histokitt (Glaswarenfabrik Karl Hecht GmbH & Co
KG, Germany). The experiment was performed in three independent
experiments (three repetitions for individual concentrations and
incubation times, including the control group). 

Evaluation of cell mitotic index and morphological changes. Analysis
of control cells and cells treated with aloe-emodin was performed
using the Nikon Eclipse 80i light microscope with Nikon Instruments
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NIS Elements D 3.10 (Nikon Instruments, Amsterdam, the
Netherlands). In each of the preparations 5,000 cells were counted in
three independent experiments (15,000 cells/concentration/time).

Based on the obtained results, the mitotic index and the number
of cells with morphological changes defining mitotic death were
determined, including the presence of giant cells, multinucleated
cells, cells containing micronuclei in cytoplasm, and the presence
of cells inhibited in metaphase (8, 9). Cell analysis for micronuclei
was performed based on the morphological characteristics reported
by Fenech et al. (10). In addition, the number of apoptotic cells was
determined.

Analysis of the cell cycle. The effect of aloe-emodin on cell
distribution in the cell cycle was assessed by flow cytometry. The
cells were incubated with aloe-emodin for 48 h at a concentration of
1 μM and 100 μM. After detaching the cells with trypsin, they were
fixed with ice-cold 70% ethanol. The cells were rinsed in phosphate-
buffered saline and then labeled with a suspension containing 0.1%
NP-40, 10 μg/ml of DNAase-free RNAse and 5 μg of propidium
iodide. After 15 min of incubation, the cells were analyzed using
FACSCanto II and the FACSDiva program (BD Biosciences, San
Jose, CA, USA). A total of 10,000 events were analyzed in each
sample. The percentage of cells in individual phases of the cycle was
estimated using the ModFit LT 4.1.7 program (Verity Software
House, Topsham ME, USA).

Evaluation of ultrastructural changes. After 48 hours’ incubation,
cells for transmission electron microscopy were prepared according
to the modified method of Marzella and Glauman (11). Cells were
fixed in 3% glutaraldehyde and 2% osmium tetroxide (SPI Supplies,
West Chester, PA, USA), and embedded in Epon 812 resin (Serva
Electrophoresis, Heidelberg, Germany). Specimen for the TECNAI
G2 Spirit microscope (FEI Company, Hillsboro, OR, USA) were
prepared using EM UC7 ultramicrotome (Leica Microsystems,
Wetzlar, Germany).

Labeling of cell nuclei with fluorochrome 4’,6-diamidine-2-
phenylindole (DAPI). After 48 hours of incubation of the cells in
the basal medium (control cells) and medium with aloe-emodin at
100 μM (test cells), staining was performed with 10 μg/ml DAPI
solution (Sigma Aldrich). The prepared preparations were analyzed
using a Nikon TiE fluorescence microscope (Nikon Instruments)
using a DAPI dichroic filter block (358 nm excitation, emission
above 461 nm).

Cell viability assay 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazole
bromide (MTT) reduction assay. Cells plated on 96-well plates
(Nunc) were incubated at 37˚C for 48 hours in a medium containing
aloe-emodin at concentrations of 1-100 μM. The medium was then
removed and the cells were incubated for 2 h with a solution of MTT
(Sigma-Aldrich) according to the modified Mossmann method (12).
After removing the medium from MTT, precipitate (containing
formazan crystals) was dissolved in DMSO and shaken for a period
of 10 min. The absorbance was read on a Synergy 2 multimode
microplate reader (BioTek, Winooski, VT, USA) at a wavelength of
570 nm and 690 nm. The experiment was performed in three
independent experiments.

Statistical analysis. The significance of the obtained differences was
determined using statistical analysis, carried out using Statistica
10.0 software (StatSoft, Krakow, Poland). The results obtained were

evaluated using a non-parametric Chi-squared test. The cell viability
analysis was supported by the Tukey’s test and the cell-cycle
distribution by Newman-Keul’s test. The differences were
statistically confirmed at p<0.05.

Results

Aloe-emodin inhibits cell division. Exposure of HeLa cells
to increasing aloe-emodin concentration for 24 and 48 hours
caused a highly statistically significant reduction in the
mitotic index. The highest inhibition of division, to 3.50%
(Figure 1), was demonstrated after 48-hour activity of aloe-
emodin at 100 μM. It should be emphasized that cells in the
metaphase stage (Figure 2) comprised 85.25% (24-hour
incubation) and 88.68% (48-hour incubation) of the dividing
cells. 

From measurements made using flow cytometry, it
appears that aloe-emodin induces cell-cycle arrest in HeLa
cells (Figure 3). The most significant (F(2,6)=239,09,
p<0.001, η2=0.988) increase in the percentage of cells was
60.78% in the G2/M phase as a result of treating cells with
100 μM aloe-emodin compared with 14.18% cells in the
G2/M phase after aloe-emodin at a concentration of 1 μM
and control (6.47%). At the same time, with 100 μM aloe-
emodin, a reduction in cells in the G0/G1 phase to 26.33%
(F(2,6)=279,084, p<0.001, η2=0.989) was demonstrated.
Control cells in this phase accounted for 75.22%. The results
indicate that the encumbrance of HeLa cells with aloe-
emodin results in a concentration-dependent significant
increase in the cell population in the G2/M phase.

Aloe-emodin induces abnormalities of mitosis and mitotic
death. With respect to control values, treatment with aloe-
emodin led to a highly statistically significant increase in the
number of multinucleated cells, cells with micronuclei
located near the nucleus and giant cells was demonstrated
(Figure 4). Giant cells in the interphase stage contained
several nuclei varying in size and shape, often with one or
more micronuclei (Figure 5B and 6E). Cells with abnormal
chromosomal segregation at various stages of mitotic
division, with the chromosomes remaining in the cytoplasm,
not pulled to the poles of the cell were also found (Figure
5D and 6C). The presence of cells with abnormal metaphase
(bipolar, tripolar, and multipolar) was also characteristic of
treatment with aloe-emodin (Figure 6B). The dispersal of the
Golgi apparatus in the form of numerous vesicles in the
cytoplasm was also observed in the cells (Figure 5C).

Aloe-emodin reduces viability and induces apoptosis of HeLa
cells. After culture of cells for 48 hours in a medium
supplemented with different concentrations of aloe-emodin, a
highly statistically significant reduction in cell viability was
observed (Figure 7B). The half-maximal inhibitory
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Figure 1. Comparison of the mitotic index of HeLa cells after 24- and 48-hour exposure to different concentrations of aloe-emodin. The results are
the average of three repetitions for each group. Differences from the control confirmed statistically at: ***p<0.001.

Figure 2. Percentage of mitotic phases of HeLa cell lines after 24- and 48-h exposure to different concentrations of aloe-emodin.
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Figure 3. Effect of aloe-emodin on the cell-cycle distribution of HeLa cells. Aloe-emodin increased the proportion of G2/M phase cells and reduced
the fraction of G0/G1 cells. A: Control cells. B, C: Cells treated for 48 hours with aloe-emodin at a concentration of 1 μM (B) and at 100 μM (C).
D: Percentage of cells in the individual phases of the cell cycle after treatment with different aloe-emodin concentrations for 48 h. Differences from
the control confirmed statistically at: ***p<0.001.

Figure 4. Comparison of the number of multinucleated cells, giant cells and HeLa cells with micronuclei after 24- and 48-hour exposure to different
concentrations of aloe-emodin. Differences from the control confirmed statistically at: *p<0.05, **p<0.01, ***p<0.001.



concentration (IC50 value) for aloe-emodin was determined by
the MTT assay as 66.40 μM, while the IC90 (concentration
inhibiting cell growth by 90%) as 75.21 μM. The highest
reduction in cell viability (to 7.30%) was found at 100 μM
aloe-emodin. At the same time, a highly significant increase in
the number of apoptotic cells was observed after 24 (74.7%)
and 48 (78.3%) hours of exposure to the test compound at 
100 μM (Figure 7A). Apoptotic cells (labeled with DAPI
fluorochrome) were characterized by clear chromatin
condensation and nuclear fragmentation (Figure 7C).

Discussion

Among the existing models of cell death, such as apoptosis,
necrosis, autophagy, oncosis, mitotic catastrophe is least
described. It is the death of the cell in which anomalies occur
during the process of mitosis. Mitotic catastrophe is a

consequence of the dysfunction of cell-cycle checkpoints, and
consequently improper chromosomal segregation and cell
division. Morphologically, it is reflected by fragmentation of
the nucleus, and the formation of large cells with one nucleus
(13). Characteristic features may also be the lack of a nucleus
or the presence of two or more nuclei in the cell, the formation
of cells with a micronucleus, multinucleated cells, and giant
cells, which are recognized as mitotic death markers (13). Cell
death due to mitotic catastrophe occurs during mitosis, or as
a result of its arrest in metaphase regardless of p53 or during
abnormal mitotic division depending on p53 (1, 2, 14).

As a consequence of the 24- and 48-h action of the
anthraquinone studied here on HeLa cells, an increase in the
number of cells with micronuclei that arise during mitotic
cell division was observed. The main mechanism
contributing to their formation are chromosomal breakdown
and dysfunction of the mitotic apparatus, the effect of which
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Figure 5. Ultrastructural changes characteristic of mitotic catastrophe in Hela line cells treated for 48 h with aloe-emodin (AE). A: Control cell,
B: giant multinucleated cell (AE=30 μM), C: cell with dispersed Golgi cisternae in the cytoplasm (AE=15 μM), D: cell undergoing abnormal
mitosis with highly condensed nuclear material (AE=60 μM). N: Cell nucleus, MN: micronuclei, ER: endoplasmic reticulum, M: mitochondria,
VA: autophagic vacolue, VL: lipid vacuole, AG: golgi apparatus. Magnification, ×16,500.



is their not being moved to the poles of the dividing cells
and staying in the cytoplasm (15).

A statistically significant increase in the population of cells
in the G2/M phase of the cell cycle, with simultaneous
reduction of cells in the G0/G1 phase (Figure 3D), the retention
of cell division mainly at the metaphase stage (Figure 2) and
the presence of mitotic death markers, i.e. cells with abnormal
mitosis (Figure 6), as well as an increase in the number of
multinucleated and giant cells (Figure 4), testify to the
sensitivity of tumor cells to the effects of aloe-emodin.
Numerous literature data indicate that cells undergoing
abnormal mitosis may undergo subsequent apoptotic death (8,
9). It is also believed that apoptosis may occur during mitotic
catastrophe but through caspase-independent pathways (16).
The highly statistically significant increase in the number of

apoptotic cells revealed in the studies here is shown in Figure
7A and C. Our team’s research revealed that aloe-emodin can
stimulate the death of HeLa cells during mitosis through the
process of mitotic catastrophe (Figure 4B and D, Figure 6). 

As can be seen from the available literature,
chemotherapeutics that affect the mitotic spindle may be the
most effective in killing cancer cells, especially those
resistant to apoptosis (16). In these cells, the signaling
pathways leading to apoptosis are blocked (17).

It should be noted that the morphological indicators of
death mitotic analyzed here were also observed in cells
treated with other anticancer compounds, such as vinca
alkaloids (vinflunine, vinorelbine, vincristine, vinblastine),
taxanes (paclitaxel, docetaxel) (17-23), oxaliplatin (24),
cisplatin (25), and doxorubicin (26).
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Figure 6. Morphological changes in Hela cell line treated with aloe-emodin for 48 h. A: Control cells (interphase and normal cell divisions), B:
cells with abnormal metaphase (bipolar, three: polar, multipolar), C: cells with abnormal chromosomal segregation, D: cell with micronuclei, E:
giant polymorphonuclear cell (hematoxylin and eosin). Magnification, ×1,000.



A characteristic morphological change after aloe-emodin is
also visible in Figure 4C, the dispersal of the Golgi apparatus.
Numerous data indicate that the cytoskeleton plays a key role
in the organization of the Golgi apparatus (27, 28). The
changes revealed (Figure 5C) suggest that aloe-emodin
induces disorganization of the cytoskeleton of the cell and at
the same time indicates its antiproliferative properties. 

Of note is the lack of cells in the anaphase, telophase and
cytokinesis stage in cells treated with aloe-emodin at a
concentration of 100 μM, which may additionally indicate
its effect on the dividing spindle (Figure 2). Similar
morphological changes have been demonstrated in cells
treated with antimitotic drugs such as vincristine (29),
colchicine (30, 31) and taxol (32, 33). 

As shown in our studies, depending on concentration and
exposure time (Figures 5-7), the death of HeLa cells on the
path of mitotic catastrophe induced by aloe-emodin can be an
alternative to apoptosis. In our research, we also showed that

another anthraquinone, emodin, is a compound that promotes
the death of cervical cancer cells through mechanism that
occurs with involvement of the lysosomal compartment (34).

Aloe-emodin showed a concentration-dependent and time-
dependent induction of mitotic death in HeLa cell lines. This
compound has similar effect to those currently used in the
oncological treatment of plant-derived cytostatic. The
changes in HeLa cells induced by aloe-emodin indicate its
great potential as an anticancer compound. 
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Figure 7. Death of HeLa cell line induced after 48 h incubation with aloe-emodin at increasing concentrations. A: The number of apoptotic cells
increased highly statistically significantly in a concentration-dependent manner. B: Cell viability determined by MTT assay after exposure to different
concentrations of aloe-emodin. Differences were confirmed statistically at: ***p<0.001. The half-maximal inhibitory concentration/concentration
inhibiting cell growth in 90%: 66.401±0.68 μM and 75.216±0.83 μM. C: Nuclear morphology in cells incubated with aloe-emodin at a concentration
of 100 μM. 1: Control cell with normal morphology of the nucleus. 2: Apoptotic cell with clear nuclear fragmentation (4’,6-diamidine-2-phenylindole
staining). Magnification, ×600. 
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