
Abstract. Background/Aim: The aim of this study was to
evaluate the effect of evodiamine alone or in combination with
chemotherapeutic agents on thyroid carcinoma cells. Materials
and Methods: TPC-1 and SW1736 thyroid carcinoma cells were
used. Cell viability, cytotoxic activity, apoptosis and migration
were examined by applying appropriate methods. Drug
combination analysis was performed. Results: Evodiamine
treatment of cells decreased cell viability, and Bcl2 and
phospho-AKT protein levels. Cytotoxic activity and the
percentage of apoptotic cells increased. After co-treatment of
wortmannin, cell viability, and phospho-AKT and Bcl2 protein
levels decreased, and cytotoxic activity increased. In
transforming growth factor-β-treated cells, evodiamine
attenuated variations in morphology, growth and migration, and
increased p21 and p53 protein levels, and decreased β-catenin,
N-cadherin, vimentin, phospho-AKT, matrix metalloproteinase-
2 and matrix metalloproteinase-9 protein levels. When cells
were treated with both evodiamine and chemotherapeutic
agents, all combination index values were lower than 1.0.
Conclusion: Evodiamine was cytotoxic towards thyroid
carcinoma cells, and repression of AKT reinforced evodiamine-
induced cytotoxicity. Furthermore, evodiamine ameliorated
proliferation, migration and epithelial–mesenchymal transition,
and synergized with chemotherapeutic agents.

Well differentiated thyroid cancer (WDTC), including papillary
thyroid cancer (PTC) and follicular thyroid cancer (FTC), is the
most frequent subtype with excellent outcomes, whereas it is
refractory to radioactive iodine (RAI) therapy in approximately
two thirds of patients with distant metastasis (1-3). On the other

hand, undifferentiated thyroid cancer (UDTC) including
anaplastic thyroid cancer (ATC) presents highly aggressive
features characterized as extrathyroidal invasion and distant
metastasis with disastrous outcomes (1-3). Since patients with
RAI therapy-refractory WDTC and UDTC are not responsive
to conventional treatment modalities, new therapeutic
approaches to improve therapeutic efficacy against cancer cells
are under investigation (1-3).

Evodiamine is a natural indole alkaloid isolated from the
fruit of Evodia rutaecarpa, also named as Wu-Zhu-Yu, and a
multi-target compound possessing a broad spectrum of
biological actions (4). Evodiamine has been traditionally used
for treatment of abdominal pain, vomiting, diarrhea, headache
and postpartum hemorrhage in herbal medicine (4).
Evodiamine exerts beneficial activities in thermoregulation,
nociception, inflammation, obesity, cardiovascular disease,
infectious disease and Alzheimer’s disease, and poses
antitumor properties in a variety of cancer cells (4, 5). It has
been proposed that the mechanism of anticancer action of
evodiamine is cell cycle arrest at G2/M phase through
activation of Cdc2/cyclin B complex, and induction of cell
death by modulating survival-related proteins including Bcl2
family proteins, p21 and p53 as well as multiple signaling
pathways including PI3K/AKT and nuclear factor-kappaB
(NF-ĸB) (6-15). However, the influence of evodiamine on
survival of thyroid carcinoma cells has not been identified.

Evodiamine attenuates migration, invasion and metastasis
of cancer cells, and thereby abrogates cancer progression (5,
16). Evodiamine represses cell migration and invasion via
regulation of matrix metalloproteinase-2 (MMP-2) and matrix
metalloproteinase-9 (MMP-9) in prostate and nasopharyngeal
cancer cells, and reduces formation of metastatic foci in colon
cancer animal model (17-19). In regard to epithelial–
mesenchymal transition (EMT), evodiamine suppresses
hepatocyte growth factor (HGF)-activated invasiveness of
cancer cells, and abolishes self-renewal through mitigation of
EMT in gastric cancer stem cells, and ameliorates
transforming growth factor-β(TGF-β)-activated EMT in in
vitro and in vivo models (15, 20-22). Meanwhile, evodiamine
has cytotoxic activities in breast cancer refractory to
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conventional chemotherapeutic agents (23, 24). Furthermore,
evodiamine exhibits cytostatic and cytotoxic properties in
paclitaxel-resistant ovarian cancer cells (25). However, the
combined effect of evodiamine with chemotherapeutic agents
on thyroid carcinoma cells has not been explored.

The aim of the present study was to assess the influence of
evodiamine on cell survival, proliferation, migration and
EMT, and analyze the effect of evodiamine in combination
with chemotherapeutic agents on growth and survival in
thyroid carcinoma cells. Our results demonstrated that
evodiamine has a negative impact on cell survival,
proliferation, migration and EMT, and has synergistic action
with chemotherapeutic agents in inhibition of growth and
survival of thyroid carcinoma cells.

Materials and Methods

Materials. RPMI1640, fetal bovine serum (FBS), L-glutamine and
streptomycin/penicillin were purchased from Life Technologies
(Carlsbad, CA, USA). Evodiamine, doxorubicin, paclitaxel and
cisplatin were obtained from BioVision (Linda, CA, USA), and
dissolved in dimethylsulfoxide (DMSO). Control cells were treated
with 0.1% vehicle DMSO. The primary antibodies against Bcl2, Bax,
survivin, phospho-histone H2A.X (γH2AX), cleaved poly (ADP-
ribose) polymerase (PARP), total and phospho-NF-ĸB (Ser536), total
and phospho-c-Jun N-terminal kinase (JNK) (Thr183/Tyr185), total
and phospho-extracellular signal-regulated kinase (ERK) 1/2
(Thr402/Tyr404), p21, p53, MMP-2, MMP-9, β-catenin, N-cadherin,
vimentin and slug were purchased from Cell Signaling
Biotechnology (Danvers, MA, USA). The primary antibodies against
total and phospho-AKT (Ser473) were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA), and the primary antibody
against β-actin was from Sigma (St. Louis, MO, USA). All other
reagents were purchased from Sigma unless otherwise stated.

Cell culture. For experiments, TPC-1 human PTC cells were
obtained from Professor Young Joo Park (Division of Endocrinology
and Metabolism, Seoul National University, Republic of Korea), and
grown in RPMI1640 supplemented with 10% heat-inactivated FBS
and 1% streptomycin/penicillin. SW1736 human ATC cells were
purchased from Cell Lines Service (CLS GmbH, Eppelheim,
Germany), and grown in RPMI1640 supplemented with 2 mM 
L-glutamine, 10% heat-inactivated FBS and 1% streptomycin/
penicillin. Cells received fresh medium at regular intervals.
Treatments and experiments were performed using cells that were
70% confluent.

CCK-8 assay. Cell viability was determined by the CCK-8 Assay Kit
(Dojindo laboratories, Kumamoto, Japan). Cells (5×103/100 μl) in
each well on 96-well plates were incubated overnight, and treated
with agents for an additional 4 h at 37˚C. Absorbance was measured
using Glomax™ Discover System GM3000 (Promega, Madison, WI,
USA). All experiments were performed in triplicate.

Cytotoxicity assay. Cytotoxic activity was measured by the LDH
Cytotoxicity Assay Kit (BioVision, Linda, CA, USA). Cells
(5×103/100 μl) in each well on 96-well plates were incubated, and
centrifuged at 250 g for 10 min. Supernatant of 100 μl was

transferred in clear 96-well plates. After addition of reaction mixture
(2.5 μl Catalyst solution in 112.5 μl Dye solution), cells were
incubated for 30 min at room temperature. Absorbance was
measured using Glomax™ Discover System GM3000 (Promega). All
experiments were performed in triplicate.

FACS analysis. Apoptotic cells were analyzed by the Annexin V-FITC
Apoptosis Detection Kit (BD Biosciences Pharminogen, San Diego,
CA, USA). Cells (1×105/ml) in each well on 6-well plates were
incubated, harvested, washed, and fixed according to manufacturer’s
protocol. FITC annexin V and/or propidium iodide (PI) in 1× binding
buffer was added for 15 min at room temperature, and analysis was
made using a CytoFLEX™ Flow Cytometer (Beckman Coulter Inc.,
Brea, CA, USA) and CytExpert Software (Beckman Coulter Inc.,
Brea, CA, USA). All experiments were performed in triplicate.

Cell number count. Cell growth was determined by cell number
count using trypan blue. Cells (1×105/500 μl) in each well on 12-
well plates were incubated, and mixed with trypan blue dye at 37˚C.
Stained cells were counted using a hemocytometer. All experiments
were performed in triplicate.

Wound healing assay. Cell migration was measured by the
CytoSelect™ 24-Well Wound Healing Assay Kit (Cell Biolabs, San
Diego, CA, USA). Following generation of a wound field (0.9 mm),
cells were incubated, and treated at 37˚C. The wound closure was
monitored by light microscope, and the cell migration rate was
calculated according to the following equation: cell migration=
[length of cell migration (nm)/migration time (h)]. All experiments
were performed in triplicate.

Western blotting. The total protein was extracted by RIPA buffer
(Sigma) containing 1× protease inhibitor cocktail and 1× phosphatase
inhibitor cocktail set V (Calbiochem, La Jolla, CA, USA). Western
blotting was performed using specific primary antibodies and
horseradish peroxidase-conjugated anti-rabbit and anti-mouse
secondary antibodies. Bands were detected using ECL Plus Western
Blotting Detection System (Thermo Fisher Scientific, Rockford, IL,
USA). The protein levels were quantified by densitometry using
ImageJ software (NIH), and normalized to β-actin levels. The
relative levels of protein to β-actin were obtained. All experiments
were performed in triplicate.

Drug combination analysis. Combination index (CI) and isobologram
were calculated by CalcuSyn program version 2.11 (Biosoft, Great
Shelford, Cambridge, UK), and the effect of drug interactions was
quantitatively documented. CI values less than 1.0, 1.0 and greater
than 1.0 manifest synergism, additivity and antagonism, respectively.
The isobologram is formed by plotting the doses of each agent
required for 50% inhibition (ED50) on the x- and y-axis, and
connecting them to draw a line segment, which is ED50 isobologram.
Combination data points that fall on, below and above the line
segment manifest additivity, synergism and antagonism, respectively.
All combinations were performed in triplicate.

Statistical analysis. All data are expressed as mean±standard error
(S.E). Data were analyzed by unpaired Student’s t-test or ANOVA
as appropriate. A p-value less than 0.05 was considered to indicate
statistical significance. All analyses were performed using SPSS
program version 24.0 (SPSS, Chicago, IL, USA).
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Figure 1. The effect of evodiamine on survival of thyroid carcinoma cells. TPC-1 and SW1736 cells were treated with 1, 3, 5 and 10 μM evodiamine for
48 h, and cell viability (A) and cytotoxic activity (B) were measured using CCK-8 assay and cytotoxicity assay, respectively. C: TPC-1 and SW1736 cells
were treated with 5 μM evodiamine for 48 h, and then the percentage of apoptotic cells was measured using FACS analysis. D: TPC-1 and SW1736 cells
were treated with 1, 3, 5 and 10 μM evodiamine for 48 h, after which the percentage of apoptotic cells was measured. E: TPC-1 and SW1736 cells were
treated with 5 μM evodiamine for 48 h, and the protein levels of Bcl2, Bax, survivin, γH2AX and cleaved PARP were measured. All experiments were
performed in triplicate. The blots are representative of three independent experiments. Data are expressed as mean±S.E. *p<0.05 vs. each matched control.
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Results

Evodiamine induces death of thyroid carcinoma cells. To
evaluate the effect of evodiamine on cell survival, TPC-1 and
SW1736 cells were treated with 1, 3, 5 and 10 μM
evodiamine for 48 h, and then cell viability (Figure 1A) and
cytotoxic activity (Figure 1B) were measured using the CCK-
8 and cytotoxicity assays, respectively. Following treatment,
cell viability was diminished, and cytotoxic activity was
enhanced in a dose-dependent manner.

When cells were treated with 5 μM evodiamine for 48 h, the
percentage of apoptotic cells using FACS analysis was
enhanced (Figure 1C). Furthermore, treatment of cells with 1,
3, 5 and 10 μM evodiamine for 48 h enhanced the percentage
of apoptotic cells in a dose-dependent manner (Figure 1D).

To estimate the influence of evodiamine on the expression
of survival-related proteins, extracts of cells treated with 
5 μM evodiamine for 48 h were examined by western blot
using antibodies against Bcl2, Bax, survivin, γH2AX and
cleaved PARP (Figure 1E). After treatment, the protein levels
of γH2AX and cleaved PARP were enhanced, and those of
Bcl2 and survivin were diminished without alteration in Bax
protein levels.

Inactivation of AKT intensifies evodiamine-induced death of
thyroid carcinoma cells. In order to determine the impact of
evodiamine on signal proteins, extracts of cells treated with
5 μM evodiamine for 24 and 48 h, and 1, 2, and 5 μM for 
48 h were examined by western blot using antibodies against
total and phosphorylated AKT, NF-kB, JNK and ERK1/2
(Figure 2A and B). Following treatment, the protein levels of
phospho-JNK increased, and those of phospho-AKT and
phospho-NF-ĸB decreased. By contrast, the protein levels of
total AKT, total NF-ĸB, total JNK, and total and phospho-
ERK1/2 were not changed.

To document the roles of signal proteins in survival of cells
exposed to 5 μM evodiamine for 48 h, cells were pretreated
with the PI3K inhibitor wortmannin, the NF-ĸB inhibitor
BAY11-7082, the JNK inhibitor SP600125 or the MEK
inhibitor PD98059. After treatment, cell viability (Figure 2C)
and cytotoxic activity (Figure 2D) were measured.
Wortmannin, but not BAY11-7082, SP600125 and PD98059,
decreased cell viability, and increased cytotoxic activity.

When cells were incubated with wortmannin prior to
treatment with 5 μM evodiamine for 48 h, the protein levels
of cleaved PARP increased, and those of phospho-AKT and
Bcl2 decreased. The protein levels of total AKT and Bax in
cells treated with both wortmannin and evodiamine were not
affected, compared with those in cells treated with
evodiamine alone (Figure 2E and F).

Evodiamine suppresses proliferation and migration of thyroid
carcinoma cells. To identify the effect of evodiamine on cell
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Figure 2. The influence of evodiamine on signal proteins in thyroid
carcinoma cells. TPC-1 and SW1736 cells were treated with 5 μM
evodiamine for 24 and 48 h, and 1, 2, and 5 μM for 48 h, and the total and
phospho-protein levels of AKT and NF-kB (A) as well as those of JNK and
ERK1/2 (B) were measured. TPC-1 and SW1736 cells were treated with
2 μM of the PI3K inhibitor wortmannin, 0.2 μM of the NF-κB inhibitor
BAY11-7082, 2 μM of the JNK inhibitor SP600125 or 2 μM of the MEK
inhibitor PD98059 prior to treatment with 5 μM evodiamine for 48 h, and
then cell viability (C) and cytotoxic activity (D) were measured. E and F:
TPC-1 and SW1736 cells were treated with 2 μM wortmannin before
treatment with 5 μM evodiamine for 48 h, after which the protein levels of
total and phospho-AKT, Bcl2, Bax and cleaved PARP were measured, and
quantified by densitometry, and normalized to β-actin levels. All
experiments were performed in triplicate. The blots are representative of
three independent experiments. Data are expressed as mean±S.E. *p<0.05
vs. each matched control; †p<0.05 vs. cells treated with both evodiamine
and DMSO; ‡p<0.05 vs. cells treated with evodiamine alone.
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proliferation, cells were treated with 5 μM evodiamine for 
48 h, and then cell growth was evaluated by using cell
number count (Figure 3A). Cell growth was reduced
following treatment with evodiamine.

To inspect the influence of evodiamine on cell migration,
cells were treated with 5 μM evodiamine for 48 h, and cell
migration was estimated using wound healing assay (Figure
3B and C), and the protein levels of p21, p53, MMP-2 and
MMP-9 (Figure 3D and E) were examined by western blot.
After treatment, cell migration and the protein levels of
MMP-2 and MMP-9 were reduced, while protein levels of
p21 and p53 were elevated.

Evodiamine mitigates TGF-β-activated EMT in thyroid
carcinoma cells. Evodiamine ameliorates cancer progression
by alleviating migration, invasion and metastasis of cancer
cells (5, 16). In this respect, evodiamine interrupts cell
migration and invasion through modulation of MMP-2 and
MMP-9 in prostate and nasopharyngeal cancer cells, and
inhibits formation of metastatic lesions in colon cancer mice
model (17-19). With regard to EMT, evodiamine attenuates
HGF-induced invasiveness in melanoma, lung and colon
cancer cells, and abrogates self-renewal via repression of EMT
in gastric cancer stem cells (15, 20). Moreover, evodiamine
impedes TGF-β-induced EMT in NRK52E cells and liver
fibrosis in rats (21, 22). Thus, we examined whether

evodiamine affects TGF-β-stimulated EMT in thyroid
carcinoma cells.

To explore the impact of evodiamine on TGF-β-stimulated
EMT, cells were treated with both 5 μM evodiamine and 100
ng/ml TGF-β for 48 h, and then cell growth (Figure 4A),
morphology (Figure 4B) and migration (Figure 4C) were
measured. Following treatment, TGF-β raised cell growth and
migration, and resulted in fibroblast-like phenotype.
Evodiamine abolished the TGF-β-induced alterations in cell
growth, morphology and migration.

Treatment of cells with 100 ng/ml TGF-β for 48 h enhanced
the protein levels of N-cadherin, phospho-AKT and MMP-2,
and diminished those of p21 and p53 without affecting those of
β-catenin, vimentin, slug, total AKT and MMP-9 (Figure 4D-
G). Treatment of cells with both evodiamine and TGF-β,
compared with TGF-β-treated cells, enhanced the protein levels
of p21 and p53, and diminished those of β-catenin, N-cadherin,
vimentin, phospho-AKT, MMP-2 and MMP-9 without affecting
those of slug and total AKT.

Evodiamine synergizes with chemotherapeutic agents in
exerting cytostatic and cytotoxic effects on thyroid carcinoma
cells. To assess the cytostatic effect of the combination of
evodiamine with chemotherapeutic agents, cells were treated
with both evodiamine and doxorubicin, paclitaxel or cisplatin,
and then the interactions were interpreted by obtaining CI
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Figure 3. The impact of evodiamine on proliferation and migration of thyroid carcinoma cells. A: TPC-1 and SW1736 cells were treated with 5 μM
evodiamine for 48 h, and cell growth was assayed using cell number count. B and C: TPC-1 and SW1736 cells were treated with 5 μM evodiamine
for 48 h, and then cell migration was measured using wound healing assay. D and E: TPC-1 and SW1736 cells were treated with 5 μM evodiamine
for 48 h, after which the protein levels of p21, p53, MMP-2 and MMP-9 were measured, and quantified by densitometry, and normalized to β-actin
levels. All experiments were performed in triplicate. The blots are representative of three independent experiments. Data are expressed as mean±S.E.
*p<0.05 vs. each matched control.
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using Chou-Talalay equation, where CI<1.0 indicates
synergism, and CI=1.0 indicates additivity, and CI>1.0
indicates antagonism (Figure 5A and B, Table I). Cell growth
was assayed by using cell number count, and the inhibition
rate was computed as 100-cell growth (%). Following

cotreatment, all CI values were lower than 1.0, and the
combination data points were all located below the
isobologram line at ED50, suggesting the synergism between
evodiamine and chemotherapeutic agents in leading to
cytostatic activity in thyroid carcinoma cells.
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Figure 4. The effect of evodiamine on TGF-β-stimulated epithelial–mesenchymal transition in thyroid carcinoma cells. TPC-1 and SW1736 cells
were treated with both 5 μM evodiamine and 100 ng/ml TGF-β for 48 h, and cell growth (A), morphology (B) and migration (C) were measured. D
and E: TPC-1 and SW1736 cells were treated with both 5 μM evodiamine and 100 ng/ml TGF-β for 48 h, and then the protein levels of β-catenin,
N-cadherin, vimentin, slug, and total and phospho-AKT were measured. F and G: TPC-1 and SW1736 cells were treated with both 5 μM evodiamine
and 100 ng/ml TGF-β for 48 h, after which the protein levels of p21, p53, MMP-2 and MMP-9 were measured. All experiments were performed in
triplicate. The blots are representative of three independent experiments. Data are expressed as mean±S.E. *p<0.05 vs. each matched control;
†p<0.05 vs. cells treated with both evodiamine and TGF-β. β-Cat: β-Catenin; N-Cad: N-Cadherin.



Next, to analyze the cytotoxic effect of the combination of
evodiamine with chemotherapeutic agents, cells were treated
with both evodiamine and the above chemotherapeutic agents
(Figure 5C and D, Table II). Cell viability was measured
using CCK-8 assay, and the death rate was calculated as 100-
cell viability (%). After cotreatment, all CI values were lower
than 1.0, and the combination data points were all placed
below the isobologram line at ED50, implying that
evodiamine synergistically has a cytotoxic effect with
chemotherapeutic agents in thyroid carcinoma cells.

Discussion

This study demonstrated, for the first time, that evodiamine
resulted in cell death with concomitant variations in survival-
related proteins, and inactivation of AKT potentiated the
negative effect of evodiamine on survival of thyroid carcinoma
cells. Additionally, evodiamine attenuated proliferation,
migration and EMT by modulating EMT-related proteins, and
displayed synergism with chemotherapeutic agents in
repressing the growth and survival of thyroid carcinoma cells.

Evodiamine shows remarkable antimitogenic action in a
range of cancers including hormone-sensitive prostate and
breast cancers on the cellular level (5). As one of feasible
mechanisms, it has been reported that evodiamine blocks cell
cycle progression at G2/M phase in conjunction with
stimulation of Cdc2/cyclin B complex (6, 7). Meanwhile,
Bcl2 family proteins perform multiple crucial functions for
cellular homeostasis such as survival and proliferation (26).
In this regard, relative expression of the pro-survival protein
Bcl2 and the anti-survival protein Bax, called the Bcl2/Bax
switch, has an influence on the survival of cancer cells (27).
With respect to impact of evodiamine on survival-related
proteins including Bcl2 family proteins, evodiamine causes
cell death through suppression of Bcl2, Bcl-xL, survivin,
inhibitor of apoptosis protein, MMP-9, cyclin D1 and
cyclooxygenase 2 in a variety of cancer cells (8). Moreover,
it has been shown that evodiamine leads to cell death via
Bcl2 regulated by ubiquitin-proteasome system, Bcl2/Bax
ratio, p21 and p53 in A375-S2 melanoma cells (9, 10). In
HepG2 hepatoma cells, evodiamine results in cell death by
reducing Bcl2/Bax ratio (11). Although it was presented that
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Table I. Combination index values of growth of thyroid carcinoma cells at combined doses determined by the median effect analysis method.

Cells                      Evo (μM)             Dox (μM)               Pac (nM)                Cis (μM)                                                        CI

                                                                                                                                                             Evo+Dox                Evo+Pac                      Evo+Cis

TPC-1                         0.5                         0.5                          0.5                           50                            0.740                      0.808                           0.687
                                   1                            1                             1                            100                            0.891                      0.908                           0.873
                                   1.5                         1.5                          1.5                         150                            0.786                      0.842                           0.874
                                   2                            2                             2                            200                            0.593                      0.748                           0.839
SW1736                      0.5                         0.5                          0.5                           50                            0.937                      0.939                           0.806
                                   1                            1                             1                            100                            0.769                      0.876                           0.813
                                   1.5                         1.5                          1.5                         150                            0.810                      0.890                           0.798
                                   2                            2                             2                            200                            0.637                      0.766                           0.760

CI: Combination index; Evo: evodiamine; Dox: doxorubicin; Pac: paclitaxel; Cis: cisplatin.

Table II. Combination index values of survival of thyroid carcinoma cells at combined doses determined by the median effect analysis method.

Cells                      Evo (μM)             Dox (μM)               Pac (nM)                Cis (μM)                                                        CI

                                                                                                                                                             Evo+Dox                Evo+Pac                      Evo+Cis

TPC-1                         0.5                         0.5                          0.5                           50                            0.793                      0.812                           0.727
                                   1                            1                             1                            100                            0.901                      0.883                           0.880
                                   1.5                         1.5                          1.5                         150                            0.845                      0.920                           0.938
                                   2                            2                             2                            200                            0.732                      0.899                           0.910
SW1736                      0.5                         0.5                          0.5                           50                            0.851                      0.851                           0.905
                                   1                            1                             1                            100                            0.905                      0.900                           0.841
                                   1.5                         1.5                          1.5                         150                            0.869                      0.918                           0.896
                                   2                            2                             2                            200                            0.797                      0.833                           0.843

CI: Combination index; Evo: evodiamine; Dox: doxorubicin; Pac: paclitaxel; Cis: cisplatin.



evodiamine inhibited survival and proliferation of ARO cells,
thought to be ATC cells, the cells have been identified as
colon cancer cells (7, 28). TPC-1 and SW1736 cells used in
this study have been authenticated as PTC and ATC cells,
respectively, and thus our findings are the first to report that
evodiamine induces death of true thyroid carcinoma cells

(28). Briefly, evodiamine reduced cell viability, and elevated
cytotoxic activity and the percentage of apoptotic cells in a
dose-dependent manner. Correspondingly, evodiamine
reduced Bcl2 protein levels, whereas it did not change Bax
protein levels, causing reduction of Bcl2/Bax ratio. In
addition, evodiamine elevated the protein levels of γH2AX
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Figure 5. The influence of the combination of evodiamine with chemotherapeutic agents on growth and survival of thyroid carcinoma cells. TPC-1
and SW1736 cells were treated with both 0.5, 1, 1.5, 2 μM evodiamine and 0.5, 1, 1.5, 2 μM doxorubicin, 0.5, 1, 1.5, 2 nM paclitaxel or 50, 100,
150, 200 μM cisplatin for 24 h. A and B: Cell growth was measured assayed by using cell number count, and the inhibition rate was calculated as
100-cell growth (%). C and D: Cell viability was measured using CCK-8 assay, and the death rate was computed as 100-cell viability (%).
Combination index and isobologram were estimated. All experiments were performed in triplicate. Data are expressed as mean±S.E.



and cleaved PARP, and reduced those of survivin. These data
indicate that evodiamine leads to cell death with concomitant
alterations in expression of Bcl2, survivin and γH2AX in
thyroid carcinoma cells. Furthermore, these results suggest
that evodiamine exerts a cytotoxic activity through
modulation of survival-related proteins in thyroid carcinoma
cells. In this regard, further studies on clinical implications
of evodiamine in thyroid cancer patients are necessary to
examine whether cytotoxicity is reenacted in in vivo models.

PI3K/AKT signaling orchestrates many intracellular
processes essential for survival of healthy cells (29). In
thyroid carcinoma cells, it has been shown that aberrant
activation of PI3K/AKT signaling participates in neoplastic
transformation, and PI3K/AKT signaling plays pivotal roles
in cell survival in our previous reports (30-37). With respect
to the involvement of PI3K/AKT signaling in evodiamine-
induced antitumor action, it has been shown that evodiamine
enhances the therapeutic efficacy of gemcitabine via direct or
indirect negative regulation of PI3K/AKT signaling in in vitro
and in vivo models of pancreatic cancer (12). Moreover,
evidence has been provided clarifying that evodiamine results
in cell death by diminishing phospho-AKT protein levels in
HepG2 hepatoma cells, and represses cell proliferation
through inactivation of PI3K/AKT signaling and PTEN in
osteosarcoma cells (11, 13). In A375-S2 melanoma cells,
evodiamine causes cell death via diminution of PI3K/AKT
signaling and enhancement of Fas-L/NF-ĸB signaling, and
deactivation of PI3K/protein kinase C and ERK cascade with
inactivation of SIRT1 (9, 10). In addition to PI3K/AKT
signaling, evodiamine has anticancer action by modulating
different signaling pathways such as NF-ĸB, mitogen-
activated protein kinases and Wnt/β-catenin (8, 14, 15). In the
present study, evodiamine enhanced the protein levels of
phospho-JNK, and diminished those of phospho-AKT and
phospho-NF-ĸB without affecting those of total AKT, total
NF-ĸB, total JNK, and total and phospho-ERK1/2. However,
in cells treated with evodiamine, the PI3K inhibitor
wortmannin only, but not the inhibitors of NF-ĸB, JNK and
ERK1/2, diminished cell viability, and enhanced cytotoxic
activity. Furthermore, wortmannin enhanced the protein levels
of cleaved PARP, and diminished those of phospho-AKT and
Bcl2 without affecting those of total AKT and Bax. These
findings manifest that suppression of AKT stimulates cell
death induced by evodiamine in thyroid carcinoma cells.
Considering our previous studies verifying that inhibition of
AKT intensifies the cytotoxic activity of various agents in
thyroid carcinoma cells (38-40), the results of this study
imply that repression of AKT reinforces evodiamine-induced
cytotoxicity in thyroid carcinoma cells.

The p21, p53 and matrix metalloproteinases are related to
proliferation, migration, invasion and metastasis of cancer
cells (41-43). In this regard, we have previously reported that
p21, p53, MMP-2 and MMP-9 are responsible for

proliferation and migration of thyroid carcinoma cells (37,
44). Besides its cytostatic and cytotoxic effects, evodiamine
impedes cancer progression through interruption of migration,
invasion and metastasis of cancer cells (5, 16). In in vitro and
in vivo studies, it has been shown that evodiamine suppresses
cell migration and invasion via MMP-2 and MMP-9 in
prostate and nasopharyngeal cancer cells, and decreases
metastatic foci in colon cancer cell-inoculated nude mice (17-
19). With respect to EMT, evodiamine has been documented
to inactivate bioactive HGF, and thereby inhibit HGF-
stimulated invasiveness in melanoma, lung and colon cancer
cells (20). Moreover, evodiamine lessens self-renewal by
ameliorating EMT in a process of canonical Wnt/β-catenin
signaling in gastric cancer stem cells, and exhibits a
repressive property on TGF-β-stimulated EMT in NRK52E
cells and liver fibrosis in rats (15, 21, 22). In the present
study, evodiamine decreased cell growth and migration in
conjunction with increment of the protein levels of p21 and
p53 as well as decrement of those of MMP-2 and MMP-9.
TGF-β accelerated cell growth and migration, and induced a
fibroblast-like phenotype, while evodiamine abolished the
TGF-β-induced changes in cell growth, morphology and
migration. In TGF-β-treated cells, the protein levels of 
N-cadherin, phospho-AKT and MMP-2 increased, and those
of p21 and p53 decreased but those of β-catenin, vimentin,
slug, total AKT and MMP-9 were not altered. In cells treated
with both evodiamine and TGF-β, compared with TGF-β
alone, the protein levels of p21 and p53 increased, and those
of β-catenin, N-cadherin, vimentin, phospho-AKT, MMP-2
and MMP-9 decreased, whereas those of slug and total AKT
were unchanged. Taken together, these data reveal that
evodiamine mitigates cell proliferation and migration with
concomitant overexpression of p21 and p53 as well as
underexpression of β-catenin, N-cadherin, vimentin, phospho-
AKT, MMP-2 and MMP-9 in TGF-β-treated thyroid
carcinoma cells. In addition, these results suggest that
evodiamine negatively affects TGF-β-induced EMT of thyroid
carcinoma cells through regulation of EMT-related proteins.

In the national guidelines, it is recommended that
chemotherapeutic agents may be considered in tyrosine kinase
inhibitor-refractory WDTC and ATC patients (2, 3). In this
regard, doxorubicin has been approved as monotherapy, but its
clinical efficacy and response are not satisfactory in ATC
patients (45). Furthermore, it has been reported that
doxorubicin fails to eliminate cancer stem cells derived from
ATC cells (46). With respect to other chemotherapeutic agents,
paclitaxel was shown to be a more beneficial chemotherapeutic
agent than those traditionally used in ATC patients but we have
reported that the heat shock protein 90 inhibitor 17-allylamino-
17-demethoxygeldanamycin antagonizes with paclitaxel in
inducing death of ATC cells (32, 47). Moreover, cisplatin alone
or in combination with docetaxel was shown to have an
influence on ATC patients (3, 48). In view of the combination
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of evodiamine with chemotherapeutic agents, evodiamine
induces cell death in chemoresistant breast cancer in vitro and
in vivo models (23, 24). In addition, evodiamine leads to
cytostatic and cytotoxic action in A2780 ovarian cancer cells
refractory to paclitaxel (25). In the present study, when
evodiamine was combined with the chemotherapeutic agents
doxorubicin, paclitaxel or cisplatin, all CI values were lower
than 1.0 in terms of inhibition and death rates. These findings
demonstrate that evodiamine has a synergistic activity with
doxorubicin, paclitaxel or cisplatin in suppressing growth and
survival of thyroid carcinoma cells. Furthermore, these results
imply that evodiamine acts synergistically with
chemotherapeutic agents to induce cytostasis and cytotoxicity
in thyroid carcinoma cells. Therefore, combination of
evodiamine with chemotherapeutic agents may be an attractive
therapeutic regimen in human thyroid cancer.

In conclusion, our results suggest that evodiamine poses
antioncogenic action by modulating survival-related proteins,
and inhibition of AKT magnifies evodiamine-induced cytotoxic
activity in thyroid carcinoma cells. Moreover, evodiamine
abrogates proliferation, migration and EMT by regulating EMT-
related proteins, and synergizes with chemotherapeutic agents
in inducing cytostasis and cytotoxicity in thyroid carcinoma
cells. Although our data should be scrutinized in an in vivo
model, this study implies that evodiamine alone or in
combination with chemotherapeutic agents is a promising
remedy in thyroid cancer patients resistant to conventional
approaches.
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