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Abstract. Background/Aim: Cancer stem cells (CSCs) play
a critical role in resistance to chemotherapy. CD44 is a cell
surface marker of CSCs. CD44 variant 9 (CD44v9) interacts
with a cystine-glutamate antiporter (xCT) and is an
unfavorable predictive factor in gastric cancer. We
investigated the impact of CD44v9 expression on
S-fluorouracil (5-FU) resistance and the efficacy of the xCT
inhibitor, sulfasalazine (SASP), in improving drug resistance.
Materials and Methods: The human gastric cancer cell line
MKN28 was transfected with pRc/CMV plasmids encoding
human CD44 or CD44v9, which were used for in vitro and
in vivo experiments. Results: CD44v9 expression results in
5-FU resistance by increasing intracellular glutathione and
suppressing the drug-induced production of reactive oxygen
species (ROS). SASP improved the drug sensitivity of
CD44v9-expressing cells. Conclusion: Inhibition of xCT
improved the clinical efficacy of chemotherapy against
gastric cancer. CD44v9 expression can be a novel biomarker
to predict resistance against 5-FU in gastric cancer.

Gastric cancer is the fifth leading cancer and the third most
common cause of cancer-related deaths worldwide (1-3).
Helicobacter pylori infection causes atrophic gastritis leading
to gastric cancer. H. pylori is classified as a class I
carcinogen and is estimated to account for about 89% of
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gastric cancer cases (4). H. pylori produces CagA protein,
which is an effector protein of the type IV secretion system
and the bacterial oncoprotein implicated in gastric
carcinogenesis (5). However, translocated CagA is usually
degraded by autophagy in host epithelial cells. In contrast,
CagA specifically accumulates within CD44 variant 9
(CD44v9)-expressing cancer stem cells (CSCs) by escaping
autophagic degradation (6). Additionally, we recently
reported that CAPZA1 functions as a negative regulator of
autophagy, and thereby, translocated CagA accumulates in
CAPZA1-overexpressing cells. These findings suggest that
the presence of CAPZA1l-overexpressing cells remaining in
the gastric mucosa even after eradication therapy, increases
the risk of metachronous gastric cancer (7).

Chemotherapy is one of the main therapeutic options for
advanced gastric cancers. Recent studies have demonstrated
that CSCs strongly contribute to chemotherapeutic resistance
and tumor recurrence in several types of cancers (8-11).
CD44, a major adhesion molecule of the extracellular matrix,
is one of the cell surface markers of CSCs in many types of
solid tumors (12-16). Especially CD44v9 interacts with xCT,
a subunit of the glutamate-cystine transporter, and stabilizes
xCT leading to increased intracellular levels of reduced
glutathione (GSH). This mechanism enables CD44v9-
expressing CSCs to survive under various conditions of
stress by suppressing intracellular reactive oxygen species
(ROS). GSH induction and ROS suppression via CD44v9-
xCT interaction leads to drug resistance against cisplatin
(CDDP), which is one of the most widely used platinum
drugs (17). Administration of sulfasalazine (SASP), which is
a specific inhibitor of xCT-mediated cystine transport,
improves the sensitivity of tumors formed by HCT116 cells
in nude mice to CDDP (17). It also inhibits growth, invasion,
and metastasis in several types of cancers (18-21). In
addition to CDDP resistance, fluoropyrimidine resistance in
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gastric cancer is also a critical factor associated with clinical
outcomes. Currently, clinical guidelines recommend doublet
or triplet platinum/fluoropyrimidine combinations as the
first-line of treatment for patients with advanced/metastatic
cancer (22-24). Several regimens including these key drugs
have been established and 5-fluorouracil (5-FU) is a widely
used pyrimidine analog. It is crucial to understand the
mechanism of drug resistance against 5-FU for improving
the efficacy of available chemotherapy. 5-FU generates
mitochondrial ROS via a p53-dependent pathway, leading to
tumor cell death (25). Therefore, we hypothesized that
CD44v9 expression contributes to the resistance of 5-FU by
stabilizing xCT. Here, we showed that CD44v9 expression
leads to 5-FU resistance by increasing intracellular GSH and
inhibition of xCT improves 5-FU sensitivity of CD44v9-
expressing cells.

Materials and Methods

Cell culture and transfection of CD44s and CD44v9 plasmids. The
human gastric moderately differentiated tubular adenocarcinoma
cell line, MKN28, was cultured in MEM (Gibco, Grand Island, NY,
USA) supplemented with 10% FBS. cDNAs for human CD44s and
CD44v9 were transfected into pRC/CMV expression plasmid
(Invitrogen, Carlsbad, CA, USA). Transfection of plasmids and cell
selection were performed as previously described (6, 17).

Reagents and anticancer agents. N-acetylcysteine (NAC) (Sigma-
Aldrich, St. Louis, MO, USA) was used as a radical scavenger. 5-
FU and SASP were purchased from Kyowa Hakko Kogyo (Tokyo,
Japan) and Sigma-Aldrich, respectively.

Cytotoxicity assay. Cells were plated into 96-well microplates
(5%103 cells/well), cultured overnight, and then, treated with NAC,
5-FU, and SASP for 2 days. Cell Titer-Glo luminescence cell
viability kit (Promega, Madison, WI, USA) was used according to
the manufacturer’s instructions.

Apoptosis assay. Cells (1x104 cells/well) were treated with 5-FU for
2 days. Cell Death Detection ELISAPLUS kit (Roche Diagnostics,
Mannheim, Germany) was used according to the manufacturer’s
instructions.

Measurement of reactive oxygen species. Cells were exposed to
5-FU and SASP for 24 h and were then incubated with 10 mM of
CM-H2DCFDA (Invitrogen) in HBSS (Gibco) for 60 min at 37°C.
Cells were dissociated using 1 mM EDTA, and the intensity of DCF
fluorescence was quantified by flow cytometry.

Glutathione assay. Cells (2x103 cells/well) were cultured overnight
and then treated with 5-FU and SASP for 12 h. GSH-Glo Glutathione
Assay Kit (Promega) was used according to the manufacturer’s
instructions.

Xenograft animal model. All animal experiments in the present study
were approved by The Keio University Institutional Animal Care and
Use Committee. Female NOD/SCID/IL-2Rynull (NOG) mice at 8-9
weeks of age (Central Institute for Experimental Animals, Kanagawa,
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Japan) were injected subcutaneously (5x10° cells/mouse, 5 mice in
each group) on day 0. Physiological saline, 5-FU (25 mg/kg of body
weight), and SASP solution (pH 8, 250 mg/kg of body weight) were
injected intraperitoneally once a day from day 14 to day 18 and from
day 21 to day 25. Tumor volumes were calculated every 7 days by
using the equation, V (in mm3)=(AxB2)/2, where A is the largest
diameter and B is the diameter perpendicular to A.

Statistical analysis. GraphPad Prism was used for statistical analysis
(GraphPad Software, CA, USA). Student’s t-test was performed to
compare two groups. For comparison of more than two groups, one-
way analysis of variance and Tukey’s multiple comparison post-hoc
test were performed. The criterion of statistical significance was set
at p-value <0.05.

Results

The cytotoxicity of 5-FU was associated with an increase in
ROS and a decrease in GSH. 5-FU showed a cytotoxic effect
in MKN28 cells in a dose-dependent manner (Figure 1A).
5-FU induced intracellular ROS (Figure 1B). The intracellular
level of GSH was significantly decreased by 5-FU treatment
(Figure 1C). Addition of NAC significantly improved cell
viability of MKN28 cells treated with 5-FU (Figure 1D).
These findings demonstrated that intracellular GSH levels and
ROS are involved in 5-FU cytotoxicity.

The expression of CD44 variant 9 induced drug resistance
against 5-FU. MKN28 cells were transfected with pRc/CMV
expression plasmid encoding human CD44s or CD44v9.
Representative immunofluorescent stained cells are shown in
Figure 2A. The induction of CD44v9, but not CD44s,
significantly improved cell viability and reduced the
apoptotic rate of MKN28 cells treated with 5-FU (Figure
2B). MKN28-CD44v9 cells showed significant increase in
cell viability compared with MKN28-CD44s cells when
treated with 4-100 pg/ml of 5-FU (Figure 2C).

The expression of CD44 variant 9 increased intracellular
GSH and suppressed 5-FU-induced ROS. Expression of
CD44v9, but not CD44s, significantly increased intracellular
levels of GSH (Figure 3A). 5-FU treatment significantly
reduced intracellular GSH levels in MKN28-CD44s cells
similar to MKN28 cells. In contrast, intracellular GSH levels
in MKN28-CD44v9 cells did not change even after
administration of 5-FU (Figure 3B). The accumulation of
intracellular ROS was less in MKN28-CD44v9 cells
compared to MKN28-CD44s cells post 5-FU treatment
(Figure 3C). These findings suggested that the suppression of
ROS via increased GSH levels leads to 5-FU resistance in
CD44v9-expressing cells.

Sulfasalazine promoted drug sensitivity of MKN28-CD44v9
cells to 5-FU. In MKN28-CD44s cells, 5-FU increased the
intracellular levels of ROS and addition of SASP enhanced
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Figure 1. The cytotoxicity of 5-FU is associated with oxidative stress. (A) Changes in cell viability of MKN28 cells upon treatment with 5-FU. (B)
DCF-fluorescence intensity of MKN 28 cells treated with 5-FU. (C) Intracellular GSH level of MKN28 cells with 5-FU treatment. (D) Cell viability
of MKN?28 cells treated with NAC and 10 ug/ml of 5-FU. *p<0.05, **p<0.01, ***p<0.001.

this effect. On the other hand, co-treatment of cells with 5-
FU and SASP, but not 5-FU alone, significantly elevated the
levels of 5-FU-induced oxidative stress in MKN28-CD44v9
cells, similar to the levels observed in MKN28-CD44s cells
(Figure 4A). Intracellular GSH levels in MKN28-CD44s
cells decreased when treated with either 5-FU alone or a
combination of 5-FU and SASP. MKN28-CD44v9 cells
maintained GSH levels when treated with 5-FU alone but the
additional treatment with SASP significantly decreased GSH
levels in these cells (Figure 4B). These findings implied that
co-treatment with 5-FU and SASP can improve the drug
resistance of MKN28-CD44v9 cells against 5-FU. The cell
viability of MKN28-CD44v9 cells was significantly higher

than that of MKN28-CD44s cells when treated with 10
pg/ml of 5-FU along with 0, 100 and 200 pM of SASP,
while there was no difference in cell viability between
MKN28-CD44v9 and MKN28-CD44s cells with 300 uM of
SASP (Figure 4C). These results suggested that a sufficient
local concentration of SASP can have an adjuvant potential.

Sulfasalazine improved the anti-tumor efficacy of 5-FU in
vivo. Mice were injected with MKN28-CD44s or MKN28-
CD44v9 cells and subsequently treated with vehicle (control
group), 5-FU (5-FU group), or 5-FU and SASP (5-FU+SASP
group) (Day 0). The tumor volumes were measured on days
14, 21, and 28 (Figure 5A). Among the tumors formed by
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Figure 2. CD44v9 transfection induced 5-FU resistance in MKN28 cells. (A) Fluorescence immunocytochemistry of MKN 28 cells transfected with
CD44s and CD44v9. Alexa Fluor 568-conjugated goat anti-mouse 1gG and Alexa Fluor 488-conjugated goat anti-rat 1gG antibody were used as
secondary antibodies for anti-CD44 antibody and anti-CD44v9 antibody, respectively. (B) Changes in cell viability and cell apoptosis rate in MKN2S8,
MKN28-CD44s, and MKN28-CD44v9 cells treated with 10 ug/ml 5-FU. (C) The difference in cell viability between MKN28-CD44s and MKN2S§-

CD44v9 cells treated with 5-FU. *p<0.05, **p<0.01, ***p<0.001.

MKN?28-CD44s cells, the tumor volume in 5-FU+SASP
group was significantly smaller compared to the control
group on day 21. In addition, tumors were significantly
smaller in both 5-FU group and 5-FU+SASP group
compared to the control group on day 28 (Figure 5B). In
contrast, among the tumors formed by MKN28-CD44v9
cells, 5-FU+SASP group showed smaller tumor volume
when compared to both control group and 5-FU group on
days 21 and 28 (Figure 5C). These findings demonstrated
that tumors of MKN28-CD44v9 cells are 5-FU resistant, but,
SASP sensitized cells to 5-FU.
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Discussion

The present study demonstrated that CD44v9 induced drug
resistance against 5-FU by increasing intracellular GSH levels
and suppressing intracellular ROS levels. Inhibiting xCT-
mediated cystine transport by SASP improved the drug
resistance of CD44v9-expressing tumors against 5-FU both in
vitro and in vivo. We previously reported that the interaction
between CD44v9 and xCT induces drug resistance against
CDDP via enhanced anti-oxidant defense system and that SASP
improves this resistance (17). Given that fluoropyrimidine (e.g.
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Figure 3. CD44v9 promoted the antioxidant defense mechanism in
cancer cells. (A) Intracellular GSH level in MKN28, MKN-CD44s, and
MKN-CD44v9 cells. (B) Changes in intracellular GSH level in MKN-
CD44s and MKN-CD44v9 cells treated with 5-FU. (C) Changes in
DCF-fluorescence intensity in MKN-CD44s and MKN-CD44v9 cells
treated with 5-FU. *p<0.05, ***p<0.001.
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Figure 4. Sulfasalazine improved 5-FU resistance induced by CD44v9
expression. (A) Changes in DCF-fluorescence intensity in MKN-CD44s
and MKN-CD44v9 cells treated with 5-FU and SASP. (B) Changes in
intracellular GSH level in MKN-CD44s and MKN-CD44v9 cells treated
with 5-FU and SASP. (C) Cell viability of MKN-CD44s and MKN-
CD44v9 cells treated with different concentrations of SASP and 10
ug/ml 5-FU. *p<0.05, **p<0.01, ***p<0.001.
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Figure 5. Sulfasalazine improved the anti-tumor efficacy of 5-FU in a xenograft mouse model. (A) Study design using NOD/SCID/IL-2Rynull (NOG)
mice. (B) Tumor volumes in MKN28-CD44s transplanted mice treated with vehicle, 5-FU or 5-FU plus SASP. (C) Tumor volumes in MKN28-CD44v9
transplanted mice treated with vehicle, 5-FU or 5-FU plus SASP. *p<0.05, **p<0.01, ***p<0.001.

5-FU) and platinum (e.g. CDDP) are key chemotherapeutic
drugs for gastric cancer, our findings suggest that an adjuvant
therapy targeting CD44v9-xCT axis can be promising to
improve chemotherapy outcomes for gastric cancer.

Since the increase of ROS is common in many pathways
leading to cell death (26), the expression of CD44v9 may
play a crucial role in the survival of cancer cells against
various intrinsic and extrinsic stimuli not only in gastric
cancer but also in other cancers. It has been shown that the
expression of CD44v in breast cancer cells resulted in
enhanced lung colonization and enhanced ROS defense
(27). Metastatic sites are new environments for cancer
cells, and cells need to survive under microenvironmental
stress (28). CD44v may contribute to the survival and
colonization of metastatic cells by neutralizing oxidative
stress. We demonstrated that epithelial splicing regulatory
protein 1 regulates the expression of CD44v, and the
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epithelial splicing regulatory protein 1-CD44v-xCT axis is
a potential therapeutic target for prevention of metastasis
(27). We also reported that the expression of CD44v9 in
primary gastric cancer can be a predictive marker for
recurrence after curative endoscopic submucosal dissection.
Importantly, we found that CD44v9 expression is an
independent predictive factor, regardless of the severity of
gastric atrophy (29). Our findings suggest that the
expression of CD44v9 determines the aggressive behavior
of gastric cancer cells. A study on head and neck squamous
cell carcinoma reported that concurrent chemoradiotherapy
for advanced lesions induced the expression of CD44v9,
which was associated with poor prognosis (30). This
finding implies that the expression of CD44v9 results in
resistance to not only chemotherapy but also radiation
therapy. This is because the mechanism of the efficacy of
radiotherapy is thought to be the production of ROS (31,
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32). Furthermore, a recent study demonstrated that CD44v9
expression in primary hepatocellular carcinomas in
hepatitis C virus positive patients was associated with poor
overall and recurrence-free survival, younger-age, and poor
histological tumor differentiation. It was also suggested that
CD44v9-positive cells have increased invasion activity
(33). These findings imply that targeting CD44v9-xCT axis
and intervening the anti-ROS defense mechanism of cancer
cells can be a novel adjuvant therapy for various cancers.

In the present study, we used SASP, a specific inhibitor of
xCT-mediated cystine transport, and showed its efficacy to
improve the drug sensitivity of CD44v9-expressing cancer
cells to 5-FU. SASP has been widely used in clinical settings
for patients with rheumatoid arthritis and ulcerative colitis,
although, the mechanism as to how SASP exerts its
therapeutic effect in these diseases remains unclear. SASP is
a pro-drug composed of 5-aminosalicylic acid (5-ASA)
linked to sulfapyridine through an azo bond (34). It is
absorbed in the small intestine only partially because of low
solubility and poor permeability (35). The bioavailability of
SASP is thought to be less than 15% (36). The remainder is
reduced to sulfapyridine and 5-ASA by bacterial
azoreductase (37, 38). For SASP to be used in clinical
application, several questions arise: (i) Will a tolerable dose
of SASP, administered orally, achieve the required
concentration in human tumor tissues? (ii) Are there any
other efficient and safe routes for administration of SASP to
achieve a sufficient concentration? Due to low bioavailability
and several known adverse effects of SASP, the development
of a novel xCT inhibitor that is more tolerable with high
efficacy is desired.
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